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ABSTRACT

This investigation is concerned with minimum weight designs of arch
structures. Using the finite element method, the arch is modeled by
contiguous bar-beam elements. Element stiffness coefficients in terms of
local degrees of freedom are related to system degrees of freedom through
local to global coordinate transformations. After coordinate transformations,
element stiffness coefficients are assembled into FEM stiffness equations for
the arch structure. An objective function for weight minimization, with
constraints on failure, arch geometry, and section dimensions, is minimized

by the DOT optimization code. Results are presented for a number of cases.
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I. INTRODUCTION

The arch has been employed in the fabrication of engineering
structures for over five thousand years. Its suitability to compressive load
design made it especially favored when masonry, not steel, was the principle
building material. (Due to masonry being stronger in compression than in
tension.) Its elegant shape, more natural and graceful than the straight lines
and perpendiculars of traditional man-made structures, made it fashionable
among architects and civil engineers. Its influence can be cited in diverse
cultures, among which include the Egyptians, Mesopotamians, Romans, (see
Figure 1.1), Byzantines, French, Chinese, and English.

A number of investigations on the optimization of arches have been
conducted err the years. In 1976, Farshad [Ref. 1], using the calculus of
variations, derived optimality conditions in the form of nonlinear partial dif-
ferential equations for hinged-hinged arches. An augmented functional,
comprised of the total potential energy of the system and the objective
function, appended to the system via Lagrange multipliers, when minimized
with respect to state variables and with respect to design variables yield the
system equilibrium equations, and the optimality conditions respectively.

Three objective functions were imposed:
— optimal thrust

— minimum length of arch




~ minimum volume

The arch span and the loading are specified. The nonlinear system of
optimality equations were presented but not solved.

In 1980, Rozvany et al [Ref. 2] considered the problem of arch
optimization using the Prager-Shield criteria. Here, the arch was in fact a
funicular frame with beams rigidly interconnected to one another. Only
statically determinate systems were investigated. The first "arch” with a
specified span consisted of two inclined beams with a concentrated load along
the center of symmetry. The second investigation dealt with an "arch”
consisting of three beam segments, the center segment being horizontal, and
inclined members from the hinged supports. Two concentrated loads were
applied at the intersections of the inclined members with the horizontal
center member. For the single load "arch" it was found that the optimal
"arch” develops either bending only or axial forces only in the entire structure
depending on the range of the 4L/d ratio, where L is the span of the structure
and d is the constant depth of the cross-section. For 4L/d greater than 8, the
optimal structure has a height half of the span, and there is only axial force
throughout the structure. For 4L/d less than 8, the optimal structure is a
straight horizontal beam (i.e., the height is zero), and only bending
throughout the structure. The width of the beam segments for the optimal
“"arch” varies linearly from the hinged support to the center line.
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In a 1980 paper, Lipson et al [Ref. 3] investigated the optimal design of
arches using the complex method. Both the arch shape and the cross
sectional dimensions are the design variables for the minimum weight
structure. Only symmetric arches with constant depth and constant width
were considered. The section was taken as a thin walled rectangular tube
with vertical and horizontal wall thicknesses as design variables. The arch
was approximated with equal length straight beam sections. Thus, each
beam segment had three design variables, the two wall thicknesses and the
left end vertical location. In addition, the uniform height and uniform width
of the rectangular tube were design variables. Side constraints in the form of
upper and lower bounds were placed on all of the design variables. A
modified version of the complex method of Box was used as the scheme to
obtain a "fully-stressed” optimum design. The shape of the arch was taken as
a parabola. The optimization algorithm provided the minimum weight
parabolic arch for a uniform load over a specified span. It was shown that a
parabolic arch with a rise 0.342 times the span length is the optimal
parabolic shape for the case of a uniform horizontal load. Deviations within
10% from this rise have negligible effect on the optimal weight. It was
further shown that parabolic steel arches will fail due to their own weight at
span lengths greater than 1,543 ft. For relatively high arches, the maximum
axial thrust, which occurs at the supports, approaches half of the total
uniform load. The results of a parametric study of optimal steel arches are
presented.

In a 1988 paper, Ang et al [Ref. 4] investigated the optimal shape of an
arch under bending and axial compression. The cross-section of the arch was

rectangular with specified constant depth and variable width. With the
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centroidal axis of the arch given by the summation of products of cubic spline
functions with linear coefficients, the arch axis is permitted to take on any
smooth shape. The linear coefficients in these products are design variables
to be determined in the optimization process. The authors considered arches

under a uniformly distributed horizontal load with three types of boundaries,
— simply supported-simply supported
— clamped-clamped
— clamped-simply supported

A yield failure constraint was imposed. A new technique for smoothing the
objective function is presented. It was shown that the optimal shape of the
arch is a parabola with a rise equal to 0.433 time the span of the arch. No
other results are presented. It should be noted that the results of [Ref. 3] and
[Ref. 4], with regard to the ratio of rise to span for an optimal parabolic arch,
do not agree.

In the study of arches, it is necessary to determine how they will be
defined. One prevalent school of thought defines an arch as a curved
structure, which when supported at both ends and loaded vertically develops
horizontal reactions. This is apparently intended to eliminate thick walled
curved beams and straight beams which develop (virtually) no horizontal
reactions when loaded laterally.

Others define an arch as a curved beam whose cross-sectional
dimensions are small relative to its radius of curvature. Hence, the
centroidal and neutral axes are assumed to coincide. How the structure is

loaded and supported becomes secondary. This description was chosen to

-5-




facilit.te the development of a finite element code capable of generating
horizontal and vertical displacements and slopes for an arbitrarily loaded
arch. Without the thin depth assumption, complications arise in the
calculations of the slopes and displacements because the arch will no longer
behave as predicted by the beam equilibrium equation:

(EIv’)'= p(s) 1.1
and the bar equilibrium equation:

(AEu’Y=~p,(8) (1.2)
where E represents Young’s Modulus, I the cross-sectional moment of inertia,
A the cross-sectional area, v the lateral displacement, u the axial

displacement, p_the axial loading, and P, the lateral loading.

Once the displacements and slopes are determined, the local stresses
can be calculated throughout the member using appropriate stress-
displacement relations. Thus able to determine the stress distribution, the
arch may be designed to achieve minimum volume (and hence weight) while
maintaining the developed stresses below some predefined maximum
allowable stress value.

The aim of this study is to "optimize" a linear, elastic, isotropic, and
homogeneous arch under a variety of loadings and end conditions. Although
these limitations are not physically essential, they were necessary to make
the investigation tenable given the time constraints of thesis research
activity. Optimization in this investigation will refer to the variance of the
cross-sectional geometry to achieve a more uniform stress distribution
throughout the member. This results in less material used and a more

efficient structure. VMA Engineering’s Design Optimization Tools [Ref. 5] is




used to perform the optimization subject to prescribed constraints on the
design variables as well as stress limitations. The objective function to be
minimized is the total volume of the arch while maintaining stresses below
the yield strength of the arch material. Though a rather simplistic model, it
forms a foundation upon which further research into more complex

geometries and conditions may be developed.




II. PROBLEM FORMULATION

Perhaps the most common optimization in structural mechanics is the
minimization of an element’s weight, subject to a specified loading. Such will
be the case for this investigation. To make the investigation tenable, the
problem needed to be narrowed down in its scope. The assumptions and

approximations made in this study are:

— The arch is approximated by a series of straight bar/beam elements
which behave according to the beam equation (1.1) and bar equation
(1.2). (See Figure 2.1)

— The arch material is isotropic, homogeneous, and linearly elastic.

— The arch’s cross-sectional area will always be of a solid rectangular
geometry.

— The arch has a constant circular radius of curvature.

— The arch "fails" if its internal stresses exceed the yield strength, Sy.

It should be noted that the third and fourth assumptions are not inherent to
the general optimization problem but rather are imposed to limit the scope of
this initial investigation. Follow on investigations will relax these

restrictions.




Figure 2.1: Bar-Beam Model of the Arch

Although these suppositions limit the applications for which the optimization

can be used, they form a foundation upon which further research can be

based.
A. THE OBJECTIVE FUNCTION

The objective of this investigation is the minimization of the structure’s
weight while maintaining a stress distribution which does not exceed the
yield strength. Since the weight of the arch is directly proportional to the
volume of material from which it is made, the objective will be satisfied if the

total volume of the arch is minimized. That is:

NEL
Objective = MINiZlbih,.li (2.1

where b, h,, and L, represent the width, height, and length of the i® element,
respectively, and NEL is the total number of elements. (See Figure 2.1b)

-9-
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Figure 2.2: Arch Dimensions

With an objective function defined, the next step in the optimization
process is to impose any necessary (design) constraints upon the system. The
constraints must be provided to represent the assumptions contained in the
modeling equations. They should be utilized to avoid undesirable behavior
such as buckling and yielding. They may also be used to apply any
limitations on behavior as desired by the designer. The constraints employed

in this investigation follow.
B. THE STRENGTH CONSTRAINT

This study assumes a linearly elastic arch. Therefore, the applied
loading must not cause the structure to exceed the elastic limit of the

material from which it is made. Hence, a design constraint which will

-10-




prevent this mode of "failure by yielding" must be imposed. To fulfill this
constraint, the internal stresses developed must remain below the yield
strength of the material. Defining the maximum stress developed in the i‘®
element of the arch to be o, and the yield strength of the arch material as Sy,

this constraint becomes

0, <S,
or in dimensionless form:
csi/Sy -1<0 (2.2)

C. GEOMETRIC CONSTRAINTS

To use the beam and bar equations, limits must be imposed upon the
geometric dimensions of the structure. It is compulsory that the depth and
width be of at least an order of magnitude smaller than the radius of

curvature for the beam and bar equations to be applicable. Hence,

h, <R/10

or in dimensionless form:

10h/R. - 150 (2.3)

Similarly, as the width increases, the arch approaches the geometry of
a shell. To maintain the geometry of an arch, an imposition upon the width
dimension is also necessary. To avoid shell behavior, a third constraint is
imposed
b, <3h,

or in dimensionless form:

b/3h, 150 (2.4)

-11 -




D. SIDE CONSTRAINTS

Finally, side constraints must be assigned to the dimensions of the
design variables. For the sake of simplicity, this investigation will only take

up the variation of the cross-sectional width dimension b,. The side

constraints must ensure real solutions are obtained, i.e., the arch is a

physical object and therefore h; and b; cannot be 'ess than a realistic finite

value. The side constraints chosen to reflect these limitations include:
0.03in. s h, (2.5)

0.03 in. < b, (2.6)

Other constraints could have also been considered. Global buckling

and local crippling are to name but two. However, the cases to be studied do
not warrant such a thorough delineation. Therefore, the design and side con-

straints have been limited to those cited.
E. OPTIMIZATION SOFTWARE

With a multitude of preprogrammed optimization routines available,
the Design Optimization Tools (DOT) software was chosen. Its selection was
based upon availability, ease of use, and reputation. DOT is a FORTRAN 77
optimization software package available from VMA Engineering. To perform
a variety of optimization tasks, DOT uses:

— The Modified Method of Feasible Directions,

— Broydon-Fletcher-Goldfarb-Shanno (BFGS) Variable Metric Method,
— Polynomial Interpolation with bounds, and

~ Sequential Linear Programming (SLP)

-12-




A user provided "main" program is used to input the variables required by
DOT. DOT in turn calls a user provided subroutine which defines the
objective function, design constraints, and design variable side constraints.
DOT iteratively evaluates the objective function, refining the design variables
until the optimal solution is obtained.

The parameters used to calculate the objective function and constraints
must be known before any optimization can occur. The variables from
equations (2.1) through (2.6) include:

— The number of elements used, NEL.
— The arch radius of curvature, R.

— The height of the i** element, h,.

— The length of the i*! element, L.

— The width of the i*? element, b,.

— The yield strength of the material from which the arch is made, S,

~ The stress at the i* node, o..

Of these terms, the number of elements is the choice of the designer. The
arch radius of curvature and height are constant throughout the span of the
arch and are defined by the problem. For simplicity, the length of each
element is made uniform such that:

1, = BRANEL) 2.7
where O represents the subtended arc of the arch. The yield strength is
determined by the material used to build the arch and the width is the design
variable to be determined by DOT.

~-13-




The stress distribution is not so readily available. However, using the
beam and bar equations, a finite element scheme can be developed to
determine the arch’s displacements and slopes due to a given loading.
Knowing how the displacements and slopes change throughout the arch, the

stress at a given point can be calculated and the optimization performed.

- 14 -



III. STRESS ANAIYSIS

The objective of this optimization is to minimize the total weight
(volume) of a load bearing arch subject to specified constraints. The strength
constraint requires that the stress at any point does not exceed the yield
strength of the arch material. To avoid violating this constraint, the value of
the stresses at any point must be known. With this requirement, the stress
development is pursued.

The normal stress at any point in the arch is composed of normal
stresses due to bending (bending stress) and norn?a] stresses due to the axial
forces (axial stress) acting upon the individual elements. Figure (3.1) depicts
these force interactions. The total normal stress is the algebraic sum of these
components.

O, = Op+0, 3.1
The arch can also develop shear stresses due to shear forces. Due to the
geometric constraint defined by equation (2.3), the shear stresses turn out to
be insignificant when compared to the normal stresses. Consequently, the
shear stresses are ignored.!

To calculate the normal stress components, we must first determine
how the elements behave. For a simple straight beam element, the maximum
normal stress due to bending occurs at the outer fibers and is given by

o, = Mc/l

1. See Appendix A for a justification of the omission of the shear stresses.

-15 -




or in terms of the beam equation:

o, = (EIv")/1
which reduces to:

o, = Ecv" (3.2)
where ¢ is the distance from the neutral axis to the outer fiber of the beam,
that is c=h/2. See Figure (3.1b).

Figare 3.1: Normal Stresses due to Bending and Axial Force

In the same manner, the normal stresses due to axial behavior can be
determined. The uniform normal stress due to axial forces, F, acting upon a
bar can be defined by:

o,=F/A

or in terms of the bar equation,
o, = (AEu’YA

-16-




which reduces to:
o =Eu’ (3.3)

See Figure (3.1c¢).
Substituting equations (3.2) and (3.3) into equation (3.1) yields the
linear equation
o, = Ecv"+ Eu’
or simply
o, = E(cv" + u’) (3.4)
where v" and u” are to be determined from the solution of equations (1.1) and
(1.2).

From this development, we see the normal stress is a function of
Young’s Modulus, the height of the beam, the first derivative of the axial
displacement, and the second derivative of the lateral displacement. Using
the Galerkin finite element method, approximate values of u’ and v" can be
determined. With these values, the stress distribution can be calculated

using Equation (3.4) and the optimization may then be conducted.

-17 -



IV. FINITE ELEMENT ANALYSIS

In order to determine the stresses developed for a given loading, the
values of u’ and v" must be determined. These derivatives can be found by
solving the beam and bar equations using the Galerkin finite element method
(FEM). The Galerkin FEM is capable of directly solving systems of linear
differential equations while preserving their symmetry.

A. THE BEAM EQUATION DEVELOPMENT

The beam equation (1.1) is a fourth order linear differential equation
requiring C! continuity. Therefore, a family of cubic shape functions are
necessary to maintain function and slope continuity. With this in mind, the
Galerkin FEM is performed on the beam equation. A finite element method
is an approximation method which ‘ransforms the differential equation of a
continuous system into a system of linear algebraic equations. The method
begins by a discretization, that is a partition, of the continuous domain into a
segmented domain of NEL elements. Thereafter, a three step process takes
place.

The first step is to form an approximate solution ¢,

v=¢=QTy 4.1)

~18—




where v is the exact solution in continuous space of the beam equation, v is

the approximate solution in discrete space, QT is the transpose of the column

vector of cubic shape functions which have the Kronecker delta property, and

v is the vector of coefficients of lateral displacements and slopes.
The second step is to form the residual of the approximation where:
R=£w-p 4.2)
where £ denotes the system operator, in this case being the beam equation

such that
£wv) = [E1w)]"
Substituting the beam equation (1.1) and the equation (4.1) into equation
(4.2) yields:
R=[ENQTy)']"p (o) (4.3)

The third step is to form the Galerkin Equations,

IQ(R)ds =0 (4.4)
where 0 represents a vector whose values are zero. Substituting equation

(4.3) into equation (4.4) yields:

IDQ[EI(QTY)"]"ds - fDQp,(s) ds=0 (4.5)

Performing two successive integrations by parts upon equation (4.5) yields:

Q[ENQTy) Tk - QEIQT) b+ [ QENQTy)ds - JDpr(s) ds=0 (4.6)
where B denotes the boundary values of the structure at each end point.
Since the coefficients of the solution vector are constants, equation (4.6)

may be rewritten as:

QENQT) Jvly - QENQT) vy + J pQENQT)ds v - IDQP,(S) ds=0 (4.7
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Using shear given by V=EIv"” and moment given by M=EIv", we define the
boundary term load vectors V and M as

v=gEN @)yl (4.82)
and
M = QEIQ"Yy |y (4.8b)

In addition, we define the system stiffness matrix KP as

KB = IDQ"EI(QT)"ds (4.8¢)
and the system force vector F® as,

Fr= fDQp,(s) ds (4.8d)
and upon substituting equations (4.8) into equation (4.7) we obtain the
syster of linear algebraic equations:

V-M+KBy-Fb=0 (4.9)
Moving the applied internal excitation and boundary terms to the right-hand
side, such that

Ky=F+M-V (4.10)
and defining the load vector of internal and external applied loads as
FB=Fb4+ M-V (4.11)

equation (4.10) simplifies to the linear system:
KBy =F® (4.12)

where the system bending stiffness matrix, KB is constructed from the union
of the i=1,...,NEL elemental bending stiffness matrices, k" and the system
bending force vector F? is formed from the union of the i=1,...,NEL elemental

bending force vectors f¥i.
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B. THE BAR EQUATION DEVELOPMENT

The FEM application to the bar equation is similar to that previously
conducted with the beam equation. The bar equation, however, is a second
order linear differential equation requiring C° continuity. Hence, only a
family of linear shape functions are necessary to maintain function continuity
in the FEM development.

Again, the basic steps of the Galerkin Method are conducted.

First, the approximate solution 1 is formed:
u=0=GTu (4.13)
where u is the exact solution of the bar equation, u is the approximate

solution, GT is the transposed column of linear shape functions with the
Kronecker delta property, and u is the vector of coefficients of axial

displacements.
Second, the residual is formed:
R=L£w+p (4.14)
where £ pertains to the differential operator of the bar equation, that is,
£w) = [AE@T
Third, the Galerkin equations are formed:

[ Gmds =0 (4.15)
Substituting equation (4.13) and the bar equation (1.2) into equation (4.14)
yields:
R = [AE(GTu)] + p,(8) (4.16)
Substituting equation (4.16) into equation (4.15) yields:
J GIAE(GTu)Tds + [,Gp () ds = 0 4.17)
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Performing a single integration by parts upon equation (4.17) yields:
AEG(G™w) |y - [ ,G/(AE(GT))ds + [yGp, )= 0 (4.18)
Again, removing the solution vector u of constant coefficients outside of the
integral yields:
AE'G(GD)u by - [ ,GTAEG™ Jds u + [ Gp () = 0 (4.19)
Recalling that the axial force F is AEu’, we define the boundary term vector
U,
U=AE'G(GMu I (4.20A)
the system stiffness matrix of the bar KA
KA = [ G(AE(GT))ds (4.20b)
and the force vector associated with internal loading p,, as
Fe = ID(_}px(s) (4.20c)
We obtain upon substituting equations (4.20) into equation (4.19),
U-Kru+E*=0 (4.21)
Taking all the internal excitation F* terms and boundary load terms U to the
right-hand side of equation (4.21) yields:
Kbu=F+U (4.22)
Defining the load vector FA as
FA=F*+ U (4.23)
and substituting equation (4.23) into equation (4.22) yields the linear system:
Klu=F4 (4.24)

where

KA = Uk (4.25)
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that is, the system axial stiffness matrix, KA is constructed from the union of
the elemental axial stiffness matrices, k*, and the system axial force vector

Fe is formed from the union of the elemental axial force vectors fi.

C. THE ELEMENTAL STIFFNESS MATRIX

In the FEM code, the global (or system) Galerkin FEM equations (4.12)
and (4.24) are actually constructed from element considerations as follows.
First, the arch is divided into NEL straight beam-bar elements as illustrated
in Figure (2.1). The stress analysis program contains a subroutine which

constructs the elemental beam and bar stiffness matrices, that is, the kb
matrices for bending and k® matrices for axial stiffness. The bending and
axial elemental force vectors, f P and f® are also determined within this

subroutine. Figure (4.1) illustrates the degrees of freedom in which these

elemental forces (and displacements) act.

-23 -




/ node 1 node 1
1’ 7 2
Bar Element Beam Element

Figure 4.1: Beam and Bar Element Degrees of Freedom

The (4x4) kP and (2x2) k® matrices of the form:

[ b1 ; bi b b1 ]
k11 k1z k13 kld
bi . bi bi bi
kbi _ k21 k22 k23 ku
= i ;b1 . bi . bi
k31 ksz k33 th

bi ; bi  pi. , bd
{ 1 ke ktpsl ku

ai adi
‘kn k12

k4l =
= ai ai
k21 k22

4

are combined to form a single (6x6) stiffness matrix, k. This is accomplished

by redefining the beam and bar degrees of freedom in the following manner:

Redefine the bar local degrees of freedom 1" and 2’, which refer to the

axial displacements at each end, as 1’ and 4’ respectively.
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Redefine the beam local degrees of freedom 1°, 2°, 3’, and 4’, which
refer to the lateral displacement and beam slope at each end as 2/, 3’,
5’, and 6" respectively. The redefined degrees of freedom are

illustrated by Figure (4.2)

Place the respective components of the beam matrices k" and bar

matrices k* into the elemental stiffness matrix ki where:

(k& 0 o0 k¥ 0 o
0 kB kM o kB kY
0 kil kX o kX kM
= = k2 0o o k¥ o o (4.26)
0 ki ki o kX k¥

| 0 ki kY 0 k3 kG

Beam-bar Element

Figure 4.2: Beam-Bar Element Degrees of Freedom
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Defining the elemental displacements and forces in a similar manner,

the elemental displacement vector becomes:
@) =<8, &, &, 8, 8, §> (4.27)

where for the it! element:

8! = the axial displacement at node 1

&)’ = the lateral displacement at node 1

&8’ = the beam slope at node 1

5! = the axial displacement at node 2

& = the lateral displacement at node 2

&Y = the beam slope at node 2

and are illustrated in Figure (4.2).
In the same manner, the elemental force vector is redefined as:
€T = <, ¥, £, 7, £V, £, ¥, £V, £, > (4.28)

where for the it? element:
f, " = the axial force at node 1

f, ¥ = the lateral force at node 1
f, = the moment at node 1

f, ¥ = the axial force at node 2
fs ¥ = the lateral force at node 2

fe ¥ = the moment at node 2

also illustrated in Figure (4.2).
With these developments, the elemental system of equations for the

beam-bar element becomes:
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[ AE/1, 0 (o -AE/1, 0 0 A
0 12E1/1} 6EI/13 0 -12EI/1; 6EI/1? 4 £

o 6EI/1? 4EI/1, 0 -6EI/1? 2EI/1, e
-AE/1, 0 0 AE/1, 0 0 o |ex

0 -12EI/1; -6EI/13 o0 12EI1/1; -6EI/13 t £

¢ 6E1/13 2£1/1, o -6EI/1} 4Er/1; | P¥| |£&
(4.29)

or simply

k'8 =" (4.30)

Prior to incorporation into the global matrix, a coordinate transformation

from local to global coordinates is undertaken.
D. COORDINATE TRANSFORMATION

Were all the elements of the same orientation with respect to one
another as it is for a straight beam, a global system of equations could be
directly constructed. For the arch, however, none of the elements share the
same orientation. This necessitates the conversion of all elemental
displacements and forces to a system of global displacements and forces. For
a reference coordinate system, the horizontal and vertical axes of the arch
were chosen. (See Figure 4.3) Defining the angle the ith element makes with
the horizontal axis a8 a;, and the 90° complement of this angle as B, the

following coordinate relationship between local and global "displacements”

and "forces” exist,
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and

&’ = & cos(a,) + & cos(B,)
& = -3} cos(B,) + & cos(ay)
& =8 (4.31)
5’ = & cos(oy) + & cos(B;)
& = -5} cos(f, + & cos(ay)

&=5

-

f, ¥ = f, i cos(ay) + £, cos(B,)

£,V = f,  cos(a) + f,* cos(B;)

f3 i - fsi (4.32)
f, ¥ =f,1 cos(a,) + f;} cos(B)

f ¥ = £, 1 cos(oy) + £ cos(B,)

¥ =1,

Figure 4.3: Displacement & Force Coordinate Transformations
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Defining [ ! as the transformation matrix for the i*h element which is
capable of performing the appropriate coordinate transformations from local

elemental coordinates to global system coordinates, the matrix becomes:

[ cos(a;) cos(B,) O 0 0 0 ]
-cos(P,) cos(a,) O 0 0 0
. I - 0 o 1 0 o o
0 0 0 cos(a;) cos(f;) O (4.33)
. 0 0 0 -cos(B,;) cos(a,) O
| o o o 0 0o 1,
and the relation between local and global "displacements” is
rb{ ] 1 cos (a;) cos(B,) 0 ) 0 0] rb{'
L -cos(B,) cos(a) O 0 0o o 8
°§}_ 0 o 1 0 o o 8¢
8i| 0 0 0 cos(a;) cos(B,) 0| 8t [
K 0 0 0 -cos(B,) cos(a,) 0O 8%
| 85 | 0 o o0 0 0 1] |8
(4.34)

A similar relation between local forces f 1’ and global forces i exists. The

notation of equations (4.31) and (4.32) can now be simplified to

& =T'§ (4.35)
fr=r'f (4.36)
where:
&N = <3}, 8,1, 8,1, 8,1, &', 85> (4.37)
(fi)T = <fli' f2i' fsi’ f4i’ fsi' f6i> (4.38)
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E. THE ELEMENTAL SYSTEM OF EQUATIONS

Recall from equation (4.30) that k‘§" = f¥. Substituting equations
(4.35) and (4.36) into equation (4.30) yields
KT =t (4.39)
Multiplying both sides of equation (4.46) by the inverse of the transformation
matrix, [}, yields

(CHETIS = (CHIpif
which simplifies to

TS = £ (4.40)
Since [ 1 is an orthogonal matrix, ([ i)! = ([ ))T, and equation (4.41) can be
rewritten as:

CHECHY = £ (4.41)
yielding the elemental system of equations transformed to the
horizontal/vertical coordinate system. Now, the elemental stiffness matrices
and force vectors are ready for the construction of the global stiffness matrix

and force vector. The ([ )Tk"([ ') term is the elemental stiffness matrix in

terms of the x- and y-coordinates, and is denoted as ki, that is:

ki = CHTETY (4.42)
F. THE GLOBAL SYSTEM OF EQUATIONS

With the elemental system of equations transformed into the global
(horizontal/vertical) coordinate system, the global system of equations can be
formed. The system stiffness matrix K is the union of the local transformed

stiffness matrices for each element, thus
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K = Uk (4.43)
where:

k' = (OO
and the global (or system) force vector F is obtained by constructing the union

of the transformed local force vectors fi, that is,

F = Ufi (4.44)
Then the global system of equations becomes:

Ké=F (4.45)

Solution of the above system stiffness equations yields the system

"displacements”. These horizontal, vertical and rotational degrees of freedom
"displacements” must be transformed back to local axial, lateral and
rotational "disi;lacements" in order to use the stress equations based upon
the beam and bar equations. First the global degrees of freedom §,, 3,, ..., 3,
where n=3(NEL+1), are related to the 5, (where i=1,2,...,6) element
horizontal, vertical, and rotational degrees of freedom for each element. The
j*h degree of freedom for the ith element is given by

5 =8, (4.46)

i
where i=1,2,...,NEL, j=1,2,3, and k=3(i-1)4+j. Then the axial, lateral, and
rotational "displacements” for the it element at node 1 are obtained from

equation (4.31) as
& = & cos(a;) + & cos(B,)
& = -5} cos(B,) + & cos(a,)
&= 5

and likewise for the node 2 end.
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In this manner, the stress at each end of each element can be
determined. Choosing the greater of the two stresses as the governing stress
of that element, the optimization analysis can be conducted for the entire

structure. In this way, the width dimension b, of each element for a

minimized weight structure is obtained.
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V. PROGRAM DESCRIPTION AND CAPABILITIES

Using the previous developments of Chapters II, III, and IV, a
FORTRAN 77 code was written for execution on the VAX 2000 workstation.
The program, named ARCH_OPT.FOR, was constructed to be as fully
interactive with the user as possible to eliminate the need for editing and
recompiling. The applicability of the code is limited by the assumptions made
in Chapter II. (i.e., rectangular cross-section, linearly elastic material, etc.)
As illustrated in Figure (5.1), execution of the program opens and reads an
input file, ARCH_IN.DAT, which contains information describing the problem
being investigated. The x-y coordinates of the end points of each element as
well as the element orientation is determined by the subroutine
GEOMETRY. The subroutine OPTIMIZATION_TOOL contains the
parameter OPTDCS, the optimization decision. With OPTDCS=1, DOT is
called and the weight optimum structure is determined using the provided
width dimension as the starting point of the opti—ization process. The stress
constraint is adhered to based upon the stresses calculated by the FEM
analysis contained in the subroutine ARCH_STRESS. If no optimization is
desired, i.e., OPTDCS=0, and the program computes the stress distribution
based upon the input data, treating the initial geometric parameters as the
actual design. With the data thus provided, the problem is solved and an
output file named ARCH_OUT.DAT is created. The output file contains the
problem parameters, the optimized design variables (width dimensions), and

the value of the resulting objective function, that is, the minimum volume.
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Non-Optimized :

Solution

ARCH_OPT

Y

GEOMETRY

Y

OPTIMIZATION_TOOL

EVAL

Y

ARCH_STRESS

Yes
OPTDCS

Optimized
Solution

DOT

Figure 8.1: ARCH_OPT Program Structure

ARCH_OUTPUT

Y

ARCH_OUT. DAT

ARCH_STRESS

To better understand the program’s capabilities, the data fields
contained in ARCH_IN.DAT need to be discussed. The file is an unformatted
set of twenty-five numbers separated by commas. This file must be of the

form:




ANGLE, RADIUS, YOUNG, YIELD, NEL, METHOD, IPRINT,
DV1BG, DV1LO, DV1UP, H, CLAN, FX, FY, FM, FA,
OPTDCS, ITERATE, PRCSN, BX1, BY1, BM1, BX2, BY2, BM2

Table 5.1 describes each of thcse parameters. For further clarification, Figure

5.2 illustrates how the variables represent the problem and tihe sign

conventions used.
TABLE 5.1: ARCH_IN.DAT FIELD PARAMETERS

ANGLE A real number from 0 to 180 representing the angle
subtended by the arch (in degrees).

RADIUS A real number representing the length of the arch.
{Dimensions are arbitrary, but they must remain
consistent for all inputs!}

YOUNG A real number representing the Young’s Modulus of the
arch material.

YIELD A real number representing the yield strength of the

material used. If a factor of safety is desired, it should
firs::l be accounted for and the resultant design strength
used.

NEL An integer value from 1 to 32 which denotes the number
of elements the user wishes to divide the arch for FEM
evaluation. The prugram is capable of up to 32 elements.

METHOD An integer from 1 to 2. This is a parameter called by DOT
to allow the user to select which optimization method is to
utilized.

METHOD=1 Modified Method of Feasible Directions
METOD=2 Sequential Linear Programming

NOTE: If the problem is unconstrained, the BFGS
algorithm will be used by default [Ref. 5, p. 2-5]

IPRINT An integer from 0 to 5 used by DOT to control the output
data from the DOT optimization. See Appendix C for the
specific outputs

DV1BG A real number which represents the design variable 1

(width dimension) best guess. It initializes all element
width dimension to the best guess value. This establishes
the optimization starting point.
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DV1LO

DV1UP

CLAN

FA

OPTDCS

ITERATE

A real number which represents design variable 1’s lower
limit. (The lower side constraint for the width dimension)

A real number which represents design variable 1’s upper
limit. (The upper side constraint for the width dimension)

A real number which represents the constant height
(depth) of the arch.

An integer which represents the number of the node at
which a concentrated load is to be applied. This number
must be from 1 to NEL+1. If no concentrated load is
desired, FX, FY, and FM should be made to equal zero.

A real number which represent the magnitude of a
concentrated load in the horizontal direction. FX is
applied at node "CLAN",

A real number which represent the magnitude of a
concentrated load in the vertical direction. FY is applied
at node "CLAN".

A real number which represent the magnitude of a
concentrated moment. FM is applied at node "CLAN".

A real number which represents the magnitude of a
uniformly distributed lateral load which spans the entire
length of the arch.

An integer value which represents the optimization
"decision” such that:

OPTDCS=1 Optimize the dimension of the problem

OPTDCS=2 Do not optimize the problem. This choice
will calculate the stress distribution of the
arch based upon the current problem
dimensions, assuming the width dimension
to be constant and equal to DV1BG

An integer value which represents the number of times
the resulting "optimized" variables are to be re-entered
into DOT and the optimization performed again. This
technique was found to be most useful in refining the
optimized solutions.
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PRCSN An integer value from 1 to 2. This parameter allows the
user to solve the FEM linear system of equations in :

PRCSN=1: single precision
PRCSN=2: double precision

B_1 An integer value represent the boundary condition of the
arch’s first nodal point such that if the value is 0, The end
is free to move in that degree of freedom. If the valueis 1,
the end is fixed in that degree of freedom.

BX1 = horizontal displacement at point A

BY1 = vertical displacement at point A

BM1 = slope of the beam at point A

B_2 An integer value represent the boundary condition of the
arch’s last nodal point such that if the value is 0, The end
is free to move in that degree of freedom. If the value is 1,
the end is fixed in that degree of freedom.
BX2 = horizontal displacement at point C
BY2 = vertical displacement at point C
BM2 = slope of the beam at point C
In summary, for a given geometry, loading, and set of boundary
conditions, the program is able to determine the optimum width dimension of
each element throughout the length of the arch. This results in an arch of
minimum volume (weight), capable of supporting the given loading. If
desired, the optimization process can be bypassed completely. This results in
the determination of the arch stress distribution based upon the input
parameters, that is, the stresses associated with the initial design
dimensions. These factors combine to make ARCH_OPT a useful tool in

evaluating a variety of arches in engineering applications.
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Figure 8.2: ARCH_IN.DAT Variable Implementation
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VI. PROGRAM VERIFICATION

To verify the finite element code used in the optimization investigation,
several non-optimum problems of beam and arch structures with known
analytical solutions were solved using the code. The code solution of these
problems also served the purpose of establishing a relation between the
number of elements used in the model and the accuracy of the method. With
a "yardstick" thus provided, "ARCH_OPT.FOR"'s capabilities for accurate
modeling of beams and arches was assumed.

The first verification problem was a cantilever beam subjected to a
concentrated end load, illustrated by Figure (6.1). Gere and Timoshenko
[Ref. 6, p. 737] give general formulas for the lateral displacements and beam

slopes for this case, as:

v = Px%(3L-x)/6EI (6.1a)
v’ = Px(2]-xV2EI (6.1b)
Using the parameters:
P = 1000 1bf h = 3.0 inches
L =45 inches E = 30 x 10° psi
b = 1.5 inches I = bh3/12

the lateral displacements and beam slopes at the midpoint and free end were
calculated. ARCH_OPT was run for this beam structure using an angle of
45.0 x 106 radians and a radius of 10° inches to approximate the straight 45
inch beam length. For a four element approximation, Table (6.1) compares

the FEM solution to the analytic solution.
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AN

Figure 8.1: Verification Problem #1

TABLE &.1: VERIFICATION PROBLEM #1 SUMMARY OF DISPLACEMENTS

Node Fixed End Mid Point Free End
Analytic & 0.000E+00 9.375E-02 3.000E-01
FEM & 0.000E+00 9.375E-02 3.000E-01
% Error fixed 0.00E+00 0.00E+00
Analytic & 0.000E+00 7.500E-03 1.000E-02
FEM & 0.000E+00 7.499E-03 9.999E-03
% Error fixed 1.33E-02

Max % Error

where percent error is defined as,
% Error = 100 x (3, — Srpp) S ppact (6.2)

The stress corresponding to the same points of interest was calculated
using equation (3.1). Recall
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which in terms of the beam equation at the i*! node becomes
(o) = (EIv"h/2)/(bih3/ 12)
or simply
(6,);, = 6EIv"/b,h? (6.3)
From equation (4.1) of the FEM development, v = QTv, hence
v = (QTy)"

v'(x) = (QT)"y = (-6/1%)y; + (4/)y;’ (6.4)
Substituting equation (6.4) into equation (6.3) yields

(0,); = (EUbh2)[-6v/1% + 4v,/] (6.5)
where v; and v,” are the lateral dispiacement and slope at x; and are obtained
from &, &, &' and &' of equation (4.31). The stresses of equation (3.1) were
then compared to those calculated by the ARCH_OPT using equation (6.5).

The results, summarized in Table (6.2), show a maximum difference of

5.00x104% between the exact and FEM solution.

TABLE 8.2: VERIFICATION PROBLEM #1 SUMMARY OF STRESSES

Verification Problem #1

(Stresses)
Node Fixed End Mid Point Free End
Analytic & 2.000E+04 1.000E+04 0.000E+00
FEM o 1.999E4+04 9.999E+03 9.712E-08
% Error 5.00E-04 5.00E-04 N/A

SEH O0R-0455

‘ Max % Error

The second verification problem considered was that of a prismatic bar,
fixed at one end and subjected to an axial concentrated load at the free end as

shown in Figure (6.2).
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Figure 6.2: Verification Problem #2

The parameters used were:
P =1000 Ibf h = 3.0 inches
L = 45 inches E = 30 x 106 ps’
b = 1.5 inches I =bh%12

From the Bar Equation (1.2), we he ve:
(AEu’Y = p(x)

AEv’ = F(x) (6.6)
and the normal stress developed in a bar due to axial loading is:
o, = F(xVA (6.7)
Substituting equation (6.6) into equation (6.7) yields
o, = AEu/A
or simply
o, =Eu’ (6.8)

Substituting equation (4.18) into equation (6.8) yields the FEM solution,
c, = E(GTu) (6.9)
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From the FEM development,
(GTu) = (u/M
which when substituted into equation (6.9) yields the stress at the ith node,
(0,), =Eu/l (6.10)
where u,, the axial displacement at x;, is obtained from 6‘1’ and 81’ of equation

(4.31). Again using the midpoint and free end as the locations for conducting
the displacement and stress analysis, the FEM code results are compared to
those generated by the analytic solutions. These results are listed in Table
(6.3). They show no difference between the FEM approximation and the

analytic solution.

TABLE 8.3: VERIFICATION PROBLEM #2 SUMMARY OF RESULTS

Verification Problem #2

(Displacements)

Node Fixed End Mid Point Free End
Analytic & 0.000E+00 1.667E-04 3.333E-04
FEM & 0.000E+00 1.667E-04 3.333E-04
% Error fixed 0.00E+00 0.00E+00
Analytic &' 0.000E+00 2.222E+02 2.222E+02
FEM &' 0.000E+00 2.222E+02 2.222E+02
% Error fixed 0.00E+00

Max % Error

The third verification problem chosen was a cantilever beam with a
concentrated moment at the free end, illustrated by Figure (6.3). Again, from
Gere and Timoshenko [Ref. 6, p.737], the analytic solution for the
displacements and slopes of this particular problem are given by the
equations:

v = M _x%/2EI (6.11a)

v'= M_%EI (6.11b)
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Figure 8.38: Verification Problem #3

Using the parameters:
M, = 10,000 Ibf h = 3.0 inches
L =45 inches E = 30 x 10° psi
b = 1.5 inches I=bh%12

the displacements and slopes were determined for the points of interest.
These results are compared to the 4-element FEM approximations in Table
(6.4).

TABLE 6.4: VERIFICATION PROBLEM #3 SUMMARY OF DISPLACEMENTS

Verification Problem #3

(Displacements)

Node Fixed End Mid Point Free End
Analytic &. 0.000E+00 2.500E-02 1.0000E-01
FEM & 0.000E+00 2.500E-02 9.9999E-02
% Error fixed 0.00E+00 1.00E-03
Analytic & 0.000E+00 2.222E-03 4.444E-03
| FEM &' 0.000E+00 2.222E-03 4.444E-03
7% Error fixed 0.00E+00

Max % Error

A comparison of the FEM approximations and analytical solutions

again show virtually no disparity. These results are presented in Table (6.5).
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TABLE 8.5: VERIFICATION PROBLEM #3 SUMMARY OF STRESSES

Verification Problem #3

(Stresses)
Node Fixed End Mid Point Free End
Analytic o 4.444E+03 4.444FE+03 4.444E+03
FEM o 4.444E+03 4.444E+03 4.444E403
% Error 0.00E+00 0.00E+00

Max % Error

The final verification problem is based upon an example arch problem
presented by Gere and Timoshenko [Ref. 6, p.616]. They demonstrate how
the unit-load method can be used to calculate the horizontal displacements of
the problem illustrated in Figure (6.4). The following formula was obtained:

8, = PR¥/2EI (6.12)

7

Figure 8.4: Arch Verification Problem #4
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For the parameters:

P = 1000 lbf e =90°

R =45 inches E =30 x 106 psi
b = 1.5 inches I =bh%12

h = 3.0 inches

the horizontal deflection is found to be 0.4500 inches. The horizontal
deflection from the 4-element FEM approximation is 0.4470 inches, an error
of 0.66%.

In all of the verification problems, the percent differences between the
values obtained by the approximate FEM method and the exact solutions
were in all cases less than 0.66%. Satisfied that the program was producing

very good data, the investigation to obtain optimum structures was pursued.
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VII CASE STUDIES

Recognizing an arch to be but another structural means of transferring
a load from one point to another, the desire to compare the efficiency of the
optimized arch to that of a traditional structure drove the first two cases
studied. Given the problem of transferring the load at B to A, as illustrated
in Figure (7.1a), numerous structures could be used. For brevity, only the

frame (7.1b) and arch (7.1c) will be studied. Given the parameters:

E = 30x10€ psi h = 2inches
Sy = 52,000 psi a = 32 inches
I '=bh%12 b = 32 inches

only the width dimension for each case will be allowed to vary. In this way, a
volume comparison of each structure, hence a measure of the relative
efficiency of the structure, may be made.

For the non-optimized frame shown in Figure (7.1b), the base (or width)
dimension is considered constant throughout. In order to keep the maximum
stress below the yield strength of the arch material, we have

(0 max S S,
or
M_ o1 <52,000 psi (7.1)
The maximum moment occurs uniformly along the vertical member of the

frame, hence

[(2000 1bf)(32 inX2 in/2)/[b(2 in)¥/12] < 52,000 psi
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or simply
1.846in.<b (7.2)

The total volume of the frame is
Volume = (32 inX2 inX1.846 in) + (32 inX2 inX1.846 in)

or
Volume = 236.3 in3 (7.3)

This volume will be the basis upon which the following optimized

volumes/weights hence efficiencies will be based.

v 2000 1bf 2000 1bf 2000 1bf
L,
a J/ C \J/

E B B B
b !
———— N S

A A A

(a) b) (c)

Figure 7.1: Methods of Transferring a Load
A. CASE 1: THE OPTIMIZED FRAME

Given the problem presented in Figure (7.1), an optimized frame of
equal load bearing capabilities was sought. First, the frame was divided into
its vertical and horizontal members. The vertical member is subjected to the

concentrated moment, aP, at C, resulting in a uniform moment and hence
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uniform stress along the member. Consequently the vertical member has a
uniform width dimension of 1.846 inches as previously determined.

The horizontal member is a cantilever beam subjected to a
concentrated end load. Since the moment along BC varies linearly from 0 at

B to aP at C, for a constant cm=Sy, the width must also vary linearly. Thus

the width varies linearly from 0 inches at the right end to 1.846 inches at C.
The volume for this frame is:
Volume = (32 inX2 in}(1.848 in) + (.5X32 inX2 in}(1.848 in)
which is:
Volume = 177.4 in3 (7.4)

The volume of the horizontal member, BC, was then optimized using a
4-element, 8-element, and 12-element discretization. Table (7.1) illustrates
the optimized volumes of each of these solutions. The percent difference
between the 4-element and 8-element solution was found to be less than
11.5% and that for the 8-element and 12-element solution to be less than 3%.
In the interest of solving many cases, it was decided to solve all future case
studies with a 12-element discretization, treating the 12-element model as
producing grid independent results.

The optimized results for the horizontal member, given in Table (7.1)
show a total member volume of 64.63 in3. The volume of the vertical member
remains the same as for the non-optimized structure, hence the total volume
of the optimized frame is

Volume = (32 inX2 inX1.848 in) + 64.63 in3
= 182.9 in® (7.5)
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This represents 22.6% less volume, hence 22.6% less weight than the non-

optimized frame.

TABLE 7.1: CASE 1 SUMMARY OF RESULTS

Element Height Length Base Volume Node Stress
finch inche! inche cubic in} si

1 2.000E+00 2.887E+00 1.B4BE+00 9.856E+00 1 5.19E+04
2 2.000E+00 2.887E+00 1.8696E+00 9.040E400 2 65.19E404
3 2.000E+00 2.887E+00 1.543E+00 8.229E+00 3 5.18E+04
4 2.000E+00 2.8687E+00 1.389E+00 7.408E+00 4 5.1BE+04
5 2.000E+00 2.887E+00 1.238E+00 8.592E+00 65 5.18E+04
8 2.000E+4+00 2.667E+4+00 1.0B2E+00 5.771E400 8 5.18E+04
7 2.000E+00 2.687E4+00 9.313E-01 4 987E4+00 7 5.17E404
8 2.000E+00 2.687E+00 7761E-01 4.134E400 8 5.15E404
9 2.000E+00 2.8687E+00 6.318E-01 3.389E+00 9 5.186E+04
10 2.000E+00 2.667E+00 4876E-01 2.404E400 10 507E+04
11 2.000E+00 2.8687E+00 3.196E-01 1.705E4+00 11 5.13E+04
12 2.000E+00 2.887E+00 2.000E-01 1.087E+00 12 5.07E+04
12-element I Volume: 483E401.:] 13 | 4 00E+04

B—element I Volume: 8.8640E401

4—-element I Volume: 7.3B5E+01

B. CASE 2: THE OPTIMIZED CANTILEVER ARCH

Given the circumstances and parameters of Figure (7.1), a cantilever
circular arch (Fig. 7.1c) was employed to perform the same function,
transferring the given load at point B to point A. The resulting dimensions
and stresses of the optimization are presented in Table (7.2). These results
illustrate what one would have expected, the width dimension is reduced
until the local stress approaches the yield strength of the material. The total
volume of the arch, 128.3 in3 is 46.3% less than the non-optimized frame and
29.9% less than the optimized frame. In moving structures where higher

weights mean higaer operating costs, savings such as these can become

significant.
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TABLE 72: CASE 2 SUMMARY OF RESULTS

Element Height Length Bage Volume Node Stress
nch nches inches joubic int 8}

1 2.000E+00 | 4.186E+00 1.884E+00 1.561E+01 1 5.20E+04
2 2.000E+00 | 4.1B8E+00 1.842E+00 1542E+401 2 5.20E+04
S 2. 000E+00 | 4.1BB8E+00 1.705E+00 1.503E+01 3 5.20E+04
4 2.000E+00 | 4.188E+00 1.718E+00 1.43B8E+01 4 5.20E+04
5 2.000E+00 | 4.1B8E+00 1.812E+00 1.350E+01 5 5.10E+04
8 2.000E+00 | 4.1BBE+00 | 1.477E+00 1.287E+01 8 6.19E4+04
4 2.000E+00 4.188E+00 1.325E+00 1.109E+01 7 5.16E+04
8 2.000E+00 4.188E4+00 1.168E+00 9.762E+00 8 56.16E+04
9 2.000E+00 | 4.188E+00 | 9.316E-01 | 7.708E+DD 9 5.05E+04
10 2.000E+00 4.1B8E+00 7.128E-01 5.968E+00 10 5.18E+04
11 2.000E+00 | 4.1B8E+00 | 5.168E-01 | 4.327E+u0 11 | 4B5E+04
12 2 000EHO0 4.186E+00 3 858E-01 12 3.47E+04

Z Volume: 13 1.78E+02

C. CASE 38: THE OPTIMIZED CANTILEVER ARCH WITH AXJAL
END LOAD

To appreciate how the stress distribution follows the moment
distribution of the member, the problem of Case 2 was modified keeping the
same parameters as outlined previously, by changing the direction of the load
as shown in Figure (7.2).

-51-




2000 1bf

Figure 7.2: Casc 3 Problem Geometry

For this case, the moment at any point is given by the expression

M = PR(1-sin(®)) (7.6)

as opposed to the moment distribution of Case 2 where the moment along the
length of the arch is

M = PRcos(89) (1.7

Assuming a unit moment, that is PR=1, then from Figure (7.3), one may see

that the area under Case 3's moment curve is significantly less than the area

under Case 2's moment curve. One would expect this to correspond with the

need for less material due ‘o less applied force (in this case, moment).
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Moment Diagram
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Figure 7.3: Moment Diagrams of Case 2 and Casc 3

The resulting optimized arch of this case has the dimensions outlined
in Table (7.3) ahd a noticeably smaller volume of 81.39 in® than the 128.3 in3
of Case 2. In fact, the reduction in volume is the same as the reduction in
areas of the moment diagrams. This result collaborates with the previous
observation. Hence one may see that the normal stress is predominantly due
to bending and essentially follows the moment distribution of the structure in

question.
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TABLE 7.8: CASE 3 SUMMARY OF RESULTS

Element Height Length Basge Volume Node Stress
nch nch inch ubic int

1 2.000E+00 4.1B8E+00 1.848E+00 1.545E+01 1 5.20E+04
2 2.000E+00 | 4.186E+00 | 1.6B7E+00 | 1.412E+01 2 5.10E+04
3 2.000E+00 | 4.188E+00 | 1435E+00 | 1.201E+01 3 5.20E+04
4 2.000E+00 4.188E+00 1.188E4+00 1.001E+01 4 6.19E+04
] 2.000E+00 | 4.188E+00 | 9.703E-01 | B8.123E+00 5 5.18E+04
8 2.000E+00 4.188E+00 7.5674E-01 8.341E+00 ] 65.10E+04
7 2.000E+00 4.186E+00 5.6876E-01 4.752E+00 k4 5.18E+04
8 2.000E+00 4.188E+00 4.000E-01 3.358E+00 8 5.10E+04
'] 2.000E+00 | 4.186E+00 | 2611E-01 | 2.1BBE+00 ] 5.18E+04
10 2.000E+00 | 4.188E+00 | 2.000E-01 1.874E400 | 10 | 4.75E+04
i 2.000E+00 | 4.18o6E+00 | 2.000E-01 1.874E+00 11 | 2.18£+04
12 2.000E+00 4 186E+00 2.000E-01 9.10E+03

2 Volume: 5 00E+03

D. CASE 4: THE CANTILEVER ARCH UNDER A DISTRIBUTED

LOAD

This case involves applying a uniformly distributed load acting radially

inward on a cantilever arched segment as pictured in Figure (7.4)

p(s)

Figure 7.4: Case 4 Problem Geometry

= 100 1bf/in




where:

E = 30x10° psi h = 2inches
Sy = 52,000 psi R = 32 inches
I'= bh3/12 © = 90 degrees

The results of the optimization contained in Table (7.4) illustrate how
the critical constraints shift from the maximum allowable stress to the
minimum allowable width dimension. Even though the moment in the
structure has diminished and the stress no longer approaches the yield
strength of the material, the geometric constraint prevents the cross-section
from becoming so thin that the bar/beam assumption is no longer valid. The
variation in the width dimensions appears to be almost logarithmic alluding
to the complexities involved with arched segments under uniformly
distributed loads. Had the arch not been optimized and assuming the
maximum width dimension of Table (7.4) to represent the uniform width
dimension of the non-optimum arch, such that

Volume = [(R,)? - (R,)2)(8 radiansXb,_, )2 (7.8)
then the total volume of the non-optimum arch would have been
Volume = 209.1 in3
Hence, the optimized volume of 101.6 in3 is 51% smaller than that of the

non-optimized arch.
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TABLE 7.4: CASE 4 SUMMARY OF RESULTS

E. CASE 56: THE SIMPLY SUPPORTED ARCH

Element Height Length Base Volume Node Stress
finches inche: nches ubic in. si

1 2. 000E+00 | 4.1B88E+00 | 2.0B0E+00 1741E+01 1 521E+04
2 2.000E+00 4.188E+00 1.930E+00 1618E401 2 5.20E+04
| 2.000E+00 | 4.188E+00 1.7862E+00 1.475E+01 ] 5.20E+04
4 2.000E+00 4.188E+00 1.662E4+00 1.208E+01 4 5.20E+04
5 2.000E+00 | 4.1B6E+00 1.315E+00 1.101E401 5 5.20E+04
8 2.000E+00 | 4.188E+00 1.087E+00 | B8.833E+00 -] 5.20E+04
7 2.000E+00 | 4.1B8E+00 | B213E-01 ; 8878E+0D 7 5.20E+04
8 2.000E+00 | 4.188E+00 | 6812E-01 £ 950E+00 8 5.190E+04
9 2.000E+00 | 4.1BS8E+00 | S.901E-01 3.268E+00 ] 5.16E+04
10 2.000E+00 4.188E4+00 2218E-0!¢ 1.857E4+00 10 5.16E+04
11 2.000E+00 | 4.188E+00 | 2.000E-01 1.674E+00 11 | 252E+04
g2 2.000E+00 4 188E+00 2.000E-01 1.874E400 5.82E+03
I Volume: i} DB 1.10E+03

This case involved the optimization of a simply supported arch
subjected to a lateral load at the midpoint, illustrated in Figure (7.5). The
arch is a first order statically indeterminate structure subject to the following

parameters:

E = 30x10° psi
S, = 52,000 psi
I = bh¥/12

h = 2inches
R = 32 inches
© = 180 degrees
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P=8000 1b+f
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<= 64 in. =

Figure 7.5: Casc 5 Problem Geometry

In order to take advantage of symmetry, the problem was divided along the

axis of symmetry with the following boundary conditions imposed on the

symmetry end,
(EIv"Y = P/2
Elv =0
u=0

The results of the optimization are summarized in Table (7.5). Here
again, the weight savings of the optimized arch of 263.2 in® over that of the
non-optimized arch, as defined by equation (7.8), of 628.1 in® is approximately
58%.
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TABLE 7.5: CASE § SUMMARY OF RESULTS

Element Height Length Bage Volume Node Stress
inch inche nche: ubic in} sl
1 2.000E+00 4.188E+00 5.130E-01 4.285E+00 1 8.08E+03
2 2.000E+00 4.188E+00 8.080E-01 7.592E+00 2 5.20E+04
3 2.000E4+00 4.188E+00 1.117E+00 8.351E+00 3 5.00E+04
4 2.000E+00 4.186E+00 1.478E+00 1.23BE+01 4 5.20E+04
5 2.000E+00 4.186E+00 1.186E+00 1.001E+01 5 5.20E+04
8 2.000E+00 4.188E-: 00 1.127E+00 9.435E+00 (] 6.20E+04
7 2.000E+4+00 4.186E+00 1.531E+00 1.282E+01 7 422E+04
8 2.000E+00 4.188E4+00 5.765E-01 4.828E+00 8 491E+04
¢ 2.000E+00 4.188E+00 5935E-01 4.969E+00 9 493E+08
i0 2.000E4+00 4.186E4+00 1.348E+00 1.127E4+01 10 5.20E+04
11 2.000E+00 4.186E+00 2.208E+00 1.B47E+01 11 5.20E+04
12 2.000E+00 4 186E4+00 3.124E+00 6.20E+04
T Volumc: 5 20E+04 |

F. CASE 6: THE FIXED-FIXED ARCH

To determine the effect of additional redundancy, the next case
involved the optimization of a fixed-fixed arch subjected to a lateral load at
the midpoint, illustrated in Figure (7.6) and subject to the following

parameters:
E = 30x106 psi h = 2inches
Sy = 52,000 psi R = 32 inches

I'=bh%12 © = 180 degrees
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P=8000 1bTFf

Figure 7.6: Case 6 Problem Geometry

The fixed supports add two additional redundant moments at the supports
when compared to the previous simply-supported, simply-supported arch of
case 5. Again taking advantage of symmetry, the problem was divided along

the axis of symmetry with the following boundary conditions imposed on the

symmetry end,
(EIv")Y = P/2
Elvi=0
u=0

The resulting optimized arch has a total volume of 210.3 in® as
summarized in Table (7.6). The non-optimum arch has a volume of 533.0 in3
assuming a constant arch width corresponding to the optimized arch’s

maximum width of 2.651 inches. Here, the weight savings of the optimized
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arch over that of the non-optimized arch is approximately 60%. It is also
worth particular note that though the loading and geometry of Cases 5 and 6
are the same, differing only with regards to the boundary conditions imposed,
Case 6 is 20% lighter. This is because a fixed-fixed structure is more
statically indeterminate than the simply supported structure. Hence we see
here that the more redundant structure is the more efficient member. This

illustrates one of the reasons why fixed-fixed structures are preferred in

construction.
TABLE 7.6: CASE 6 SUMMARY OF RESULTS
Element Height Length Bage Volume Node Stress
jfinchest inchest finchest jeubic int jpsit

i 2.000E+00 4.188E+00 1.727E+00 1.448E401 b 5.20E+04
2 2.000E400 4.188E+00 8.458E-01 7918E+00 2 5.00E+04
3 2.000E+00 4.18B68E+00 2719E-01 2.278E+00 3 4 82E+04
4 2.000E+00 4.188E+00 8.504E-01 5.445E+00 4 5.20E+04
5 2.000E+00 4.188E+00 1.0901E4+00 9.133E+00 5 4 94E+04
6 2.000E+00 4.188E+00 7899E-01 8.813E+00 8 5.20E+04
7 2.000E+00 4.188E+00 1.082E+00 8.881E+00 7 5.1BE+04
B 2.000E+00 4 1BBE+00 7.538E-01 6.311E+00 8 421E+04
9 2.000E400 4.188E+00 2585E-01 2.1864E+00 9 5.20E+04
10 2.000E+00 4. 188E+00 9.328E-01 7.800E+00 10 | 6.13E+04
11 2.000E+00 4.188E+00 1.753E+00 1.46BE+D1 11 5.24E+04
12 2.000E+00 4.186E+00 2 861E4+00 01 12 | 5.10E+04

T Volume: 13 | 5.19E+04
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VIII CONCLUSIONS

The conclusions of this study are:

the

The stress analysis based upon the bar/beam model yielded good
results with percent deviations from known analytic solutions
ranging between 0.1 and 1.5%. Hence, the bar/beam element model

is a viable technique in the approximation of arch structures.

The DOT optimization software was able to utilize the bar/beam
modeled stress analysis to efficiently determine weight optimum

arch structures.

The optimization demonstrates how structures which are more
statically indeterminate (redundant) are likewise more efficient than

identical structures under identical loading.

The weight optimization of a structure is available and effective for

all types of problem boundary conditions.

It should be noted once again that this is an initial investigation into

weight optimization of arches. Numerous opportunities exist for the

expansion of the basic assumptions made in this study. This investigation

only considered the optimization of structures of the form:

I=kA
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The general form of this type of optimization is such that

I =kA®
where n = 1, 2, or 3 depending upon which cross-sectional dimension(s) is
defined as the design variable. Some of the possibilities for future research

include:

— Allowing only the cross-sectional height dimension, h, vary while

holding all other parameters constant. (n=3)

— Allowing both the height and width dimensions to vary
proportionally, while holding all other parameters constant. (n=2)

— Allowing the radius of curvature of the arch (its center-line shape) to

vary.

— Optimizing the arch using engineering cross-sections such as box

beams, I-beams, circular cross-section, etc.

— Incorporating additional constraints (such as arch maximum height
limitations, buckling constraints, crippling constraints, etc,) in order
to expand the model; thereby enabling the model to solve a greater

variety of problems.
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APPENDIX A

JUSTIFICATION FOR OMITTING SHEAR STRESSES

The shear stress distribution through a beam of rectangular cross-
section has a parabolic distribution along the height of the member. The
maximum shear stress, located at the neutral axis of the beam, is

Tax = 1.5V/A (A.1)
where t__  is the maximum shear stress, V is the shear force, and A is the
cross-sectional area of the beam. [Ref. 6, p. 229)

The normal stress due to bending is given by the equation

o, = Mc/l (A.2)
where 6, is the maximum normal stress, M is the bending moment, and I is
the cross-sectional moment of inertia which for this case is bh3/12 where b
and h are the width and height respectively of the cross-section.

Redefining the normal stress in terms of the cross-sectional dimensions
yields

o, = M(h/2)/(bh%/12)

or
o, = 6M/hA (A.3)
The ratio of the maximum shear stress to tine normal stress due to

bending, is denoted by r and given by the expression:
r=1_.J/C (A4)
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Substituting equations (A.1) and (A.3) into equation (A.4) yields
r = (1.5V/AY(6M/hA)
or
r = Vh/4M (A.5)
For the cases investigated in this study, the maximum value r can attain is

when the loading is that of a uniformly distributed load, Py Then, where:
V=pL (A.6)
M= pyLz/ 2 (A7)

which upon substitution into equation (A.8) yields
r= (pyL)h/4(pyL2/2)

which simplifies to

r = h/2L (A.8)

The use of the beam equation requires the length of the beam to be at a

minimum ten times the height, that is:

L2 10h (A.9)
To maximize the value of r, let L equal 10h, the minimum allowable length.
Cabstituting this value of L into equation (A.8) yields

r S b/2(10h)
or simply

r<1/20 (A.10)
Hence, the maximum shear stress accounts for less than five percent of the
bending stress developed in the structure. Five percent is high considering
this analysis over-assumed the value of the shear stress by assigning the
maximum shear stress to the entire cross-section of the beam. Moreover, at

the outermost fibers where o, is a maximum, the shear stress is zero.




Therefore, under the circumstances of this study, the addition of shear

stresses was deemed to be unwarranted.

-65—




APPENDIX B

DOT USERS MANUEL, SECTION 2.1

DOT WITH APPLICATION PROGRAMS

2.1 CALLING STATEMENT

DOT is invoked by the following FORTRAN calling statement
in the user’s program:

CALL DOT ( INFO, METHOD, IPRINT, NDV, NCON, X,
* XL, XU, OBJ, MINMAX, G, RPRM, IPRM, WK, NRWK,

* IWK, NRIWK)




APPENDIX C

DOT USERS MANUEL, SECTION 2.2

2.2 PARAMETERS IN THE CALLING
STATEMENT

Table 2-1 lists the parameters in the calling statement to DOT.
Where arrays are defined, the required dimension size is given
as the array argument. These are minimum dimensions. The
arrays can be dimensioned larger than this to allow for program
expansion.

TABLE 2-1: F. RAMETERS IN THE DOT ARGUMENT LIST

PARAMETER DEFINITION

INFO Information parameter. Before calling DOT
the first time, set INFO=0. When control
returns from DOT 1o the calling program,
INFO will normally have a vaiue of 0 or 1.

it INFO= 0, the optimization is complete (or
terminated with an error message). i
INFO= 1, the user must evaluate the objec-
tive, OBJ, and constraint functions, G(),
i=1,NCON, and call DOT again. Athird
possibility, INFO= 2, exists also. In this
case, the user must provide gradient in-
formation. This is an advanced teature
and is described in Section 3.2.

METHOD Optimization method to be used.

METHOD = 0 or 1 means use the modified
method of feasible directions.

METHOD = 2 means use the sequential
linear programming method. If the probiem
in unconstrained (NCON = 0) the BFGS al-
gorithm will be used, regardless of the
value of the parameter METHOD.
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DOT WITH APPLICATION PROGRAMS

IPRINT

Print control parameter.

IPRINT = 0 no output.

IPRINT = 1 internal parameters, initial
information and results.

IPRINT = 2 same plus objective function
and X-vector at each iteration.

IPRINT = 3 same plus G-vector and
critical constraint numbers.

IPRINT = 4 same plus gradients.

IPRINT =5 same plus search direction.

NOTE: The iPRM Armray contains additiona!

print options.

NDV

Number of decisiorvdesign variables con-
tained in vector X. NDVisthe same as N
in the mathematical problem statement
given in Section 1.7.

NCON

Number of constraint vaiues contained in
array G. NCON is the same as M in the
mathematical problem statement given in
Section 1.7. NCON=0 is allowed.

X(NDV)

1 Vector containing the design variables. On

the first call to DOT, this is the user’s best
guess of the design. On the final return
from DOT (INFO=0 is returned), the vector
X contains the optimum design.

XL(NDV)

Array containing lower bounds on the
design variables, X. If no lower bounds are
imposed on one or more of the design vari-
ables, the corresponding component(s) of
XL must be set ‘o a large negative number,
say -1.0E+15. Be sure it's -1.0E+15 and
not -1.0E-15 (+15, not -15).

2-6

2.2 PARAMETERS IN THE CALLING STATEMENT
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DOT WITH APPLICATION PROGRAMS

XU(NDV)

Array containing upper bounds on the
design variables, X. if no upper bounds
are imposed on one or more of the design
variables, the corresponding component(s)
of XU must be set to a large positive num-
ber, say 1.0 E+15.

oBJ

Value of the objective function correspond-
ing to the current values of the design vari-
ables contained in X. On the first call to
DOT, OBJ need not be defined. DOT will
return a value of INFO=1 %0 indicate that
the user must evaluate OBJ and call DOT
again. Subsequently, any time a value of
INFO=1 is retumed from DOT, the objec-
tive, OBJ, must be evaluated for the cur-
rent design and DOT must be called again.
OBJ has the same meaning as F(X) in the
mathematical problem statement given in
Section 1.7.

MINMAX

Integer parameter specifying whether the
minimum (MINMAX=0,-1) or maximum
(MINMAX=1) of the objective function is to
be found.

G(NCON)

Array containing the NCON inequality con-
straint vaiues corresponding to the current
design contained in X. On the first calito
DOT, the constraint values need not be
defined. On return from DOT, if INFO=1,
the constraints must be evaluated for the
current X and DOT must be called again.
if NCON=Q, array G must be dimensioned
to 1 or larger, but no constraint values
need to be provided.

2.2 PARAMETERS IN THE CALLING STATEMENT 2
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DOT WITH APPLICATION PROGRAMS

RPRM(20) Array containing the real (floating point
numbers) control parameters. Initialize the
entire array to 0.0 to use all detautt values.
It you use other values than the defautlts,
set the corresponding entries to the
desired values. Section 3.1 describes how
to change the value of these parameters.

IPRM(20) Array containing the integer control
parameters. As with the RPRM array, set
the array to zero to use the default values,
or set the proper entries to the desired
values. Section 3.1 describes how to
change the value of these parameters.

WK(NRWK) User provided work array for real (floating
point) variables. Array WK is used to store
internal scalar variables and arrays used
by DOT. if the user has not provided
enough storage, DOT will print the ap-
propriate message and terminate the op-
timization.

NRWK Dimensioned size of work array WK.
NRWK should be set quite large, starting at
about 500 for a small problem. if NRWK
has been given too small a vaiue, an error
message will be printed and the optimiza-
tion will be terminated.

IWK({NRIWK) User provided work array for integer (fixed
point) variables. Array IWK is used to store
internal scalar variables and arrays used
by DOT. If the user has not provided
enough storage, DOT will print the ap-
propriate message and terminate the op-
timization.

2-8 2.2 PARAMETERS IN THE CALLING STATEMENT
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DOT WITH APPLICATION PROGRAMS

NRIWK Dimensioned size of work array IWK. A
good estimate is 300 for a small problem.
Increase the size of NRIWK as the problem
grows larger. If NRIWK is too small, an
error message will be printed and the op-
timization will be terminated.

Note: The minimum required values of NRWK and NRIWK are
defined as follows (The dimensions may be larger than this):

N1=NCON + NDV

N2 = 2*NDV

N3 = 10*NDV

N4 = MIN (N1,N2)

NS=1

IF NCON = 0, N5=0

NCOLA = MAX (N3,N4)
NGMAX = MIN (NCON,NCOLA)
NRB = MIN (N1,NCOLA+1)
IFNCON=0,NRB=1

NRWK = NDV*(10+NCOLA) + 5*NCON + NCOLA + NRB**2 +
MAX(NDV,NCOLA)+2*N5*NRB + 40

IF METHOD > 1, NRWK = NRWK + NGMAX +
NDV*(3+NCOLA)

NRIWK = NDV + NCON + NGMAX + 71
IF METHOD > 1, NRIWK = NRIWK + NGMAX

2.2 PARAMETERS IN THE CALLING STATEMENT 2-9
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A program called DTSTOR is provided with DOT. If you com-
pile and run this program interactively, the minimum required
values of NRWK and NRIWK .re calculated for you. See Ap-
pendix B for more information <n this option.

2-10 2.2 PARAMETERS IN THE CALLING STATEMENT

-72-




APPENDIX D

VERIFICATION AND CASE STUDY OUTPUT

VERIFICATION #1

OPTIMIZATION SOLUTION

A) Problem Parameters:

Arch Angle : 0.003 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 3.000 No of Elements: 4
B) Derived Constants:
No of System Nodal Points... 5
No of Degrees of Freedom.... 15
Length per Element.......... 11.2500
Number of Iterations........ 0
C) Structure Loading:
3 1000.0000
2 S 0.0000
3 0.0000
- 0.0000
D) Elemental Dimensionc and Stress Distribution:
Element Height Base Length Volume
1 3.00000 1.50000 11.24996 50.62481
2 3.00000 1.50000 11.24996 50.62481
3 3.00000 1.50000 11.24996 50.62481
4 3.00000 1.50000 11.24996 50.62481

E) Objective Function:
Total structure Volume: 202.499222

Node Stress
1 19999.90
2 14999.94
3 9999.967
4 4999.973
5 9.7119728E-06

F) Boundary Conditions:

Node X-Displ Y-Displ Slope
1 1 1 1
) 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope

1 0.000000E+00 0.000000E+00 0.000000E+00
2 0.257809E-01 0.112328BE-08 -0.437496E-02
3 0.937488E-01 0.409060E-08 -0.749993E-02
4 0.1B9B841E+00 0.828730E-08 -0.937491E-02
5 0.299996E+00 0.130987E-07 -0.999991E-02
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VERIFICATION #2

OPTIMIZATION SOLUTION

A) Problem Parameters:

Arch Angle : 0.003 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 3.000 No of Elements: 4
B) Derived Constants:
No of System Nodal Points... 5
No of Degrees of Freedom.... 15
Length per Element.......... 11.2500
Number of Iterations........ 0
C) Structure Loading:
20 QP 0.0000
FY. . iiteeooeooaasaonsannnnas 1000.0000
3 I 0.0000
FA......... cheeeece st 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 3.00000 1.50000 11.24996 50.62481
2 3.00000 1.50000 11.24996 50.62481
3 3.00000 1.50000 11.24996 50.62481
4 3.00000 1.50000 11.24996 50.62481
E) Objective Function:
Total structure Volume: 202.499222
Node Stress
1 222.2231
2 222.2229
3 222.2227
4 222.2224
S 222.2222
F) Boundary Conditions:
Node X-Displ Y-Displ Slope
1 1 1 1
5 0 0 0
G) Solution Vector:
Node X-Displ Y-Displ Slope
1 0.000000E+00 0.000000E+00 0.000000E+00
2 0.112328E-08 0.833330E-04 -0.191236E-09
3 0.409060E-08 0.166666E-03 -0.327832E-09
4 0.828730E-08 0.249999E-03 -0.409790E-09
5 0.130987E-07 0.333332&5~03 -0.437110E-09
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VERIFICATION #3

OPTIMIZATION SOLUTION

A) Problem Parameters:

Arch Angle : 0.003 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 4
B) Derived Constants:
No of System Nodal Points... 5
No of Degrees of Freedom.... 15
Length per Element.......... 11.2500
Number of Iterations........ 0
C) Structure Loading:
3. 0.0000
0 0.0000
2 10000.0000
FA. it it eearannanns 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 3.00000 1.50000 11.24996 50.62481
2 3.00000 1.50000 11.24996 50.62481
3 3.00000 1.50000 11.24996 50.62481
4 3.00000 1.50000 11.24996 50.62481

E) Objective Function:
Total structure Volume: 202.499222

Node Stress
1 4444.438
2 4444 .438
3 4444 .441
4 4444.441 ’
5 4444 441

F) Boundary Conditions:

Node X-Displ Y-Displ Slope
1 1 1 1
5 0 0 0

G) Solution Vector:

Node X-Displ Y-Displ Slope
1 0.000000E+00 0.000000E+00 0.000000E+00
2 -0.624994E-02 -0.273194E-09 0.111110E-02
3 -0.249998E-01 -0.109277E-08 0.222221E-02
4 -0.562495E-01 -0.245874E-08 0.333332E-02
S -0.999991E-01 -0.437110E-08 0.444442E-02
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VERIFICATION #4

OPTIMIZATION SOLUTION

A) Problem Parameters:

Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 45.000 Yield Strength: 52000.0
Arch Height: 3.000 No of Elements: 4
B) Derived Constants:
No of System Nodal Points... )
No of Degrees of Freedom.... 15
Length per Element.......... 17.5581
Number of Iterations........ 0
C) Structure Loading:
FX. e eorosanananansannnn 0.0000
2 1000.0000
3 N 0.0000
FA. . it inenresnnnnsanannns 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 3.00000 1.50000 17.55813 79.01159
2 3.00000 1.50000 17.55813 79.01159
3 3.00000 1.50000 17.55813 79.01159
4 3.00000 1.50000 17.55813 79.01159
E) Objective Function:
Total structure Volume: 316.046356
Node Stress
1 20217.61
2 18601.18
3 14266.01
4 7777.182
5 43.39704
F) Boundary Conditions:
Node X-Displ Y-Displ Slope
1 1 1 1
S 0 0 0
G) Solution Vector:
Node X-Displ Y-Displ Slope
1 0.00C000E+00 0.000000E+00 0.000000E+00
2 -0.654617E-01 0.131512E-01 0.750656E-02
3 -0.223502E+00 0.118880E+00 0.138705E-01
4 -0.381543E+00 0.355536E+00 0.181227E-01
5 -0.447005E+00 0.684770E+00 0.196159E-01
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OPTIMIZATION #1

OPTIMIZATION SOLUTION

A) Problem Parameters:

Arch Angle : 0.002 Youngs Modulus:
Arch Radius: 1000000.000 Yield Strength:
Arch Height: 2.000 No of Elements:
B) Derived Constants:
No of System Nodal Points... 5
No of Degrees of Freedom.. 15
Length per Element.......... 8.0000
Number of Iterations........ 0
C) Structure Loading:
20 2000.0000
20 0.0000
21 0.0000
37 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length
1 2.00000 1.84550 8.00000
2 2.00000 1.38407 8.00000
3 2.00000 0.92261 8.00000
4 2.00000 0.46154 8.00000
E) Objective Function:
Total structure Volume: 73.819420
Node Stress
1 52018.20
2 52020.44
3 52026.59
4 52000.27
5 9.47042B6E-05
F) Boundary Conditions:
Node X-Displ Displ Slope
1 1 1 1
5 0 0 0
G) Solution Vector:
Node X-Displ Y-Displ Slope
1 0.000000E+00 0.000000E+00 0.000000E+00
2 0.508622E-01 0.221694E-08 ~-0.121376E-01
3 0.197286E+00 0.8608B90E-08 -0.236977E-01
4 0.433113E+400 0.189046E-07 -0.341030E-01
5 0.742914E+00 0.324212E-07 -0.410363E-01
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OPTIMIZATION #1

OPTIMIZATION SOLUTION

————— - ————_——————— T —— ———— —— ——— ] ———— T — - — " " ———

A) Problem Parameters:

Arch Angle : 0.002 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Feight: 2.000 No of Elements: 8
B) Derived Constants:
No of System Nodal Points... 9
No of Degrees of Freedom.... 217
Length per Element.......... 4.0000
Number of Iterations........ 1
C) Structure Loading:
23 2000.0000
2 0.0000
31 0.0000
3 - N 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 2.00000 1.84548 4.00000 14.76385
2 2.00000 1.61572 4.00000 12.92572
3 2.00000 1.38417 4.00000 11.07339
4 2.00000 1.15351 4.00000 9.22805
5 2.00000 0.92224 4.00000 7.37795
6 2.00000 0.69289 4.00000 5.54310
7 2.00000 0.46127 4.00000 3.69015
8 2.00000 0.23665 4.00000 1.89324
E) Objectiv= Function:
Total structure Volume: 66.495445
Node Stress
1 52015.55
2 51986.30
3 52013.96
4 52013.29
5 52045.58
6 51955.51
7 52029.16
8 50706.71
9 0.2237021
F) Boundary Conditions:
Node X-Displ Y-Displ Slope
1 1 1 1
9 0 0 0
G) Solution Vector:
Node X-Displ Y-Displ Slope
1 0.000000E+00 0.000000E+00 0.000000E+00
2 0.132929E-01 0.577893E-09 -0.650196E-02
3 0.525036E-01 0.228824E-08 -0.129384E-01
4 0.117357E+00 0.511886E-08 -0.192957E-01
S 0.207485E+00 0.905344E-08 -0.255373E-01
6 0.322357E+400 0.140683E-07 -0.316093E-01
7 0.461109E+00 0.201450E-07 -0.373821E-01
8 0.622199E+00 0.271538E-07 -0.425851E-01

-78 —




9 0.801554E+00 0.349690E-07 -0.459655E-01
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OPTIMIZATION #1

OPTIMIZATION SOLUTION

A) Problem Parameters:

Arch Angle : 0.002 Youngs Modulus: 30000000.0
Arch Radius: 1000000.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12
B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom.... 39
Length per Element.......... 2.6667
Number of Iterations........ 4
C) Structure Loading:
FX.oieeeeesonsnsonenonnnnnn 2000.0000
FY . it iiiecnacsannanennansss 0.0000
FM. ..ot iiiencaiorosennanannns 0.0000
FA. . iiieresonannosnnsnnnnans 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 2.00000 1.84829 2.66667 9.85756
2 2.00000 1.69537 2.66667 9.04196
3 2.00000 1.54275 2.66667 8.22798
4 2.00000 1.38887 2.66667 7.40732
S 2.00000 1.23566 2.66667 6.59016
6 2.00000 1.08215 2.66667 5.77148
7 2.00000 0.93133 2.66667 4.96712
8 2.00000 0.77510 2.66667 4.13389
9 2.00000 0.63162 2.66667 3.36863
10 2.00000 0.46759 2.66667 2.49383
11 2.00000 0.31955 2.66667 1.70426
12 2.00000 0.20000 2.66667 1.06667
E) Objective Function:
Total structure Volume: 64.630867
Node Stress
1 51925.73
2 51892.89
3 51843.36
4 51329.66
5 51784.52
6 51739.70
7 51531.16
8 51598.32
9 50656.20
10 51320.27
11 50069.02
12 39998.66
13 0.6707708
F) Boundary Conditions:
Node X-Displ Y-Displ Slope
1 1 1 1
13 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope
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.000000E+00
.598324E-02
.237427E-01
.532194E-01
.943462E-01
.147043E+00
.211205E+00
.286684E+00
.373299E+00
.470718E+00
.578546E+00
.696051E+00
.820672E+00

COO0OO0O0OO0OOOOOOO0O0O

.000000E+00
.259434E-09
.103343E-08
.231938E-08
.411430E-08
.641459E-08
.921563E-08
.125107E-07
.162918E-07
.205440E-07
.252490E-07
.303731E-07
.358010E-07
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0.
-0.
-0.
-0.
-0.
.218709E-01
.261415E-01

-0
-0

-0.
-0.
-0.
-0.
-0.
-0.

000000E+00
442333E-02
882640E-02
132043E-01
175555E-01

303404E-01
344682E-01
384082E-01
422098E-01
455477E-01
473255E-01




OPTIMIZATION #2

OPTIMIZATION SOLUTION

A) Problem Parameters:

Arch Angle : 90.000 Youngs Modulus: 30000000.0

Arch Radius: 32.000 Yield Strength: 52000.0

Arch Height: 2.000 No of Elements: 12
B) Derived Constants:

No of System Nodal Points... 13

No of Degrees of Freedom.... 39

Length per Element.......... 4.1858

Number of Iterations........ 1
C) Structure Loadihg:

2 0.0000

FY .o esiressrenanoncenanns -2000.0000

3 0.0000

2 . N 0.0000

D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume

1 2.00000 1.86405 4.18580 15.60506
2 2.00000 1.84215 4.18580 15.42178
3 2.00000 1.79464 4.18580 15.02403
4 2.00000 1.71836 4.18580 14.38546
S 2.00000 1.61213 4.1858¢0 13.49611
6 2.00000 1.47665 4.18580 12.36194
7 2.00000 1.32535 4.18580 11.09533
8 2.00000 1.16593 4.18580 9.76072
9 2.00000 0.93161 4.18580 7.79905
10 2.00000 0.7125%9 4.18580 5.96554
11 2.00000 0.51683 4.18580 4.32666
12 2.00000 0.36557 4.18580 3.06044
E) Objective Function:
Total structure Volume: 128.302124
Node Stress
1 51975.23
2 51991.84
3 52001.67
4 51952.61
5 51914.72
6 51926.68
7 51573.75
8 50482.76
9 51888.91
10 51924.89
11 48451.66
12 34653.70
13 178.9231
F) Boundary Conditions:
Node X-Displ Y-Displ Slope
1 1 1 1
13 0 0 0
G) Solution Vector:
Node X-Displ Y-Displ Slope
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.000000E+00
.149422E-01
.589253E-01
.129477E+00
.222644E+00
.333172E+G0
.454693E+00
.579860E+00
.700496E+00
.808353E+00
.895118E+00
.952352E+00
.972583E+00

.000000E+00
.105421E-02
.987875E-02
.339057E-01
.799319E-01
.153870E+00
.260536E+00
.403368E+00
.582032E+00
.802894E+00
.105869E+01
.134670E+01
.165575E+01 ~0.747875E-01
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-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
~0.
~0.
-0.

000000E+00
714707E-02
142563E-01
213028E-01
282739E-01
351633E-01
419651E-01
486117E-01
549785E-01
613227E-01
673512E-01
723963E-01




OPTIMIZATION #3

OPTIMIZATION SOLUTION

- —— - ————— —————————— ————————— - ————— Y ——— - — i ———— - ——— " — —

A) Problem Parameters:

Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12
B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom.... 39
Length per Element.......... 4.1858
Number of Iterations........ 1
C) Structure Loading:
F ittt eenonneoecoanaannnnsns 2000.0000
FY .ot erononansasasnsnnnss 0.0000
3 - 0.0000
FA. . ittt iieancnaannnss 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 2.00000 1.84614 4.18580 15.45518
2 2.00000 1.68690 4.18580 14.12203
3 2.00000 1.43532 4.18580 12.01594
4 2.00000 1.19577 4.18580 10.01052
5 2.00000 0.97029 4.18580 8.12291
6 2.00000 0.75740 4.18580 6.34069
7 2.00000 0.56761 4.18580 4.75181
8 2.00000 0.40093 4.18580 3.35641
9 2,00000 0.26110 4.18580 2.18585
10 2.00000 0.20000 4.18580 1.67432
11 2.00000 0.20000 4.18580 1.67432
12 2.00000 0.20000 4.18580 1.67432
E) Objective Function:
Total structure Volume: 81.384300
Node Stress
1 52001.90
2 51862.35
3 51955.02
4 51942.95
S 51853.82
6 51974.19
7 51925.02
8 51871.48
9 51649.30
10 41477.37
11 21322.36
12 9098.637
13 4994.856
F) Boundary Conditions:
Node X-Displ Y-Displ Slope
1 1 1 1
13 0 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope
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0.000000E+00
0.144840E-01
0.557774E-01
0.120917E+00
0.206307E+00
0.307129E+00
0.417585E+00
0.531063E+00
0.640343E+00
0.737912E+00
0.813769E+00
0.860985E+00
0.877143E+00

0.000000E+00
~0.944371E-03
-0.914169E-02
-0.312207E-01
~-0.732726E-01
-0.140544E+00
-0.237250E+00
-0.366366E+00
-0.529394E+00
~0.726163E+00
-0.948447E+00
-0.118418E+01
~0.142556E+01
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-0.677752E-02
-0.131680E-01
-0.195029E-01
-0.257570E-01
-0.319051E-01
-0.379512E-01
-0.438425E-01
-0.495298E-01
-0.549162E-01
-0.570368E-01
-0.577029E-01
-0.578414E-01




OPTIMIZATION #4

OPTIMIZATION SOLUTION

————— -~ —— T ——————— - —————— — > " — - " " - T ———— > " - -

A) Problem Parameters:

Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12
B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom.... 39
Length per Element.......... 4.1858
Number of Iterations........ 1
C) Structure Loading:
2. 0.0000
20 0.0000
3 0.0000
20 -100.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 2.00000 2.08018 4.18580 17.41440
2 2.00000 1.93027 4.18580 16.15947
3 2.00000 1.76172 4,.18580 14.74842
4 2.00000 1.55158 4.18580 12.98917
5 2.00000 1.31450 4.18580 11.00444
6 2.00000 1.06716 4.18580 8.93384
7 2.00000 0.82127 4.18580 6.87536
8 2.00000 0.59123 4.18580 4.94951
9 2.00000 0.39007 4.18580 3.26550
10 2.00000 0.22180 4.18580 1.85686
11 2.00000 0.20090 4.18580 1.67432
12 2.00000 0.20000 4.18580 1.67432

E) Objective Function:

Total structure Volume: 101.545610

Node Stress

1 52103.21
2 52039.99
3 52033.59
4 52017.27
S 52015.93
6 51958.49
7 51950.00
8 51920.690
9 51610.81
10 51626.45
11 25188.80
12 5614.041
13 1096.744

F) Boundary Conditions:
Node X-Displ Y-Displ Slope
1 1

o=

1
13 0 0

G) Solution Vector:
Node X-Displ Y-Displ Slope
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0.000000E+00
0.145714E-01
0.573794E-01
.125999E+00
.216392E+00
.323304E+00
.440430E+00
.560627E+00
.676171E+00
.778995E+00
.861090E+00
.913642E+00
.931478E+00

[=XeoNoNoNoNoNalaNoNa]

0.
-0.
-0.
-0.
.779492E-01

-0

-0.
-0.
-0.
-0.
~0.
-0.
-0.
-0.

000000E+00
111348E-02
978175E-02
332242E-01

149537E+00
252410E+00
389635E+00
562738BE+00
771440E+00
101350E+01
127777E+01
154990E+01
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0.000000E+00
-0.69174.E-02
-0.138459E~01
-0.206572E-01
-0.273459E-01
-0.339032E-01
-0.403032E-01
-0.465215E-01
-0.525061E-01
-0.581423E-01
-0.633131E-01
-0.650579E-01
-0.651839E-01




OPTIMIZATION #5

OPTIMIZATION SOLUTION

- ———— ——————— T — - -

A) Problem Parameters:

Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12
B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom.... 39
Length per Element.......... 4.1858
Number of Iterations........ 1 '
C) Structure Loading:
FX.'iieoeoonneoennnannans . 0.0000
FY . 'viueeeoeanonasnsaannancas -8000.0000 .
2 - 0.0000
FB. v eoenoncoansunoasnaanns 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 2.00000 0.51296 4,18580 4,29430
2 2.00000 0.90694 4.18580 7.59253
3 2.00000 1.11658 4.18580 9.34755
4 2.00C00 1.47904 4.18580 12.38193
5 2.00000 1.19599 4.18580 10.01239
6 2.00000 1.12703 4.18580 9.43503
7 2.00000 1.53118 4.18580 12.81847
8 2.00000 0.57650 4.18580 4.82624
9 2.00000 0.59349 4.18580 4.96845
10 2.00000 1.34594 4.18580 11.26764
11 2.00000 2.20595 4.18580 18.46734
12 2.00000 3.12364 4.18580 26.14985

E) Objective Function:

Total structure Volume: 131.561722

Node Stress
1 8078.639
2 52000.93
3 50895.98
4 52005.46
5 52048.33
6 $2010.10
7 42175.72
8 49131.36
9 4933.140
10 52013.68
11 52043.57
12 52041.75
13 52027.50

F) Boundary Conditions:
Node X-Displ
1 1
13 1

G) Solution Vector:
Node X-Displ

Y-Displ Slope
1
0 1
Y-Displ Slope
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12
13

0.000000E+00
-0.823069E-01
-0.143411E+00
-0.178618E+00
-0.189389E+00
-0.177714E+00
-0.146174E+00
-0.105000E+00
-0.619691E-01
-0.273824E-01
-0.803875E-02
-0.764124E-03

0.000000E+00

.000000E+00
.426506E-02
.157328E~01
.270851E-01
.319111E-01
.234612E-01
.494672E-02
.525035E-01
.118718E+00
.190906E+00
.249018E+00
.286585E+00
.300012E+00
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0.
0.
0.
0.
0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
.000000E+00

0

208648E-01
173341E-01
118840E-01
554722E-02
244944E-04
683719E-02
132138E-01
165616E-01
201392E-01
168476E-01
117570E-01
606703E-02




OPTIMIZATION #6

OPTIMIZATION SOLUTION

—— - ———————— = T — > ——— . T ——— "~ —— — —— " ——— -

A) Problem Parameters:

Arch Angle : 90.000 Youngs Modulus: 30000000.0
Arch Radius: 32.000 Yield Strength: 52000.0
Arch Height: 2.000 No of Elements: 12
B) Derived Constants:
No of System Nodal Points... 13
No of Degrees of Freedom.... 39
Length per Element.......... 4.1858
Number of Iterations........ 1
C) Structure Loading:
F .t iinreeecoanannanaaeanns 0.0000
20 -8000.0000 -
2 0.0000
FA. i ittt tinansnnsaannnssns 0.0000
D) Elemental Dimensions and Stress Distribution:
Element Height Base Length Volume
1 2.00000 1.72707 4,18580 14.45838
2 2.00000 0.94577 4.18580 7.91762
3 2.00000 0.27194 4.18580 2.27661
4 2.00000 0.65040 4,18580 5.44488
5 2.00000 1.09075 4.18580 9.13130
6 2.00000 0.78986 4.18580 6.61236
7 2.00000 1.06223 4.18580 8.89255
8 2.00000 0.75388 4.18580 6.31116
9 2.00000 0.25849 4.18580 2.16400
10 2.00000 0.93275 4.18580 7.80861
11 2.00000 1.75263 4.18580 14.67236
12 2.00000 2.65143 4.18580 22.19675

E) Objective Function:
Total structure Volume: 107.886574
Node Stress
1 51991.36
2 49986.21
3 46231.32
4 51991.33
) 49404.85
6 51991.04
7 51841.79
8 42080.21 M
9 51997.34
10 51279.07
11 52434.15 .
12 51908.94
13 51935.26

F) Boundary Conditions:

Node X-Displ Y-Displ Slope
1 1 1 1
13 1 0 1

G) Solution Vector:
Node X-Displ Y-Displ Slope
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1
2
3
4
S
6
7
8
9
10
11
12
13

0.000000E+00
-0.121854E-01
-0.442765E-01
-0.861533E-01
-0.112986E+00
-0.121058E+00
-0.110454E+00
-0.850803E-01
-0.537900E-01
-0.252856E-01
-0.744947E-02
-0.654979E-03
0.000000E+00

0.000000E+00
0.457452E~03
0.615066E-02
0.177060E-01
0.297132E-01
0.342979E-01
0.237526E-01
-0.622361E-02
-0.547404E-01
~0.118485E+00
-0.173190E+00
-0.209063E+00
-0.222069E+00

0.000000E+00
0.527930E-02

0.947556E-02

0.907372E-02

0.435047E-02
-0.109393E-03
-0.701848E-02
-0.115516E-01
-0.155000E-01
-0.155501E-01
-0.110976E-01
-0.580765E-02
0.000000E+00




APPENDIX E
ARCH_OPT.FOR SOURCE CODE

PROGRAM ARCH_OPTIMIZATION

AR R AN AR AR AR R AR R A A AR AN R AR AR R KRR R AR R AR AR AR AR AR AR R AR AR R R AR AN AR AR ARk

*
*
*

*

ARCH OPTIMIZATION ANALYSIS CODE *
*

PR RS E PSR ZS SRR 2SRS RSS2 2222222222 RS2t R Rt R Ratss sy

*

* % % % % % % % B % % Bt % % % % H % H % % X ¥ X B % X% N % B ¥ B % F B % % % F % % ¥ ¥ ¥

ALPHA....TRANSFORMATION ANGLE OF ELEMENT (ANGLE TO X-AXIS)

ANGLE....TOTAL ANGLE OF ARCH (IN DEGREES)

BASE..... DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS

BASEL....DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS LOWER
SIDE CONSTRAINT

BASEU....DOT ARRAY CONTAINING THE ELEMENTAL BASE DIMENSIONS UPPER
SIDE CONSTRAINT

BETA ....TRANSFORMATION ANGLE OF ELEMENT (ANGLE TQO Y-AXIS)

B1l...... BOUNDARY TERMS APPLIED AT END "1"

B 2...... BOUNDARY TERMS APPLIED AT END "2"

C1l,..,C5...CONSTANTS RELATED TO ELEMENT STIFFNESS COEFFICIENTS

CLAN..... CONCENTRATED LOAD APPLICATION NODE (THE NODE FX,FY,FM ARE
APPLIED

COUNT....COUNTS THE NUMBER OF ITERATIONS COMPLETED

DOF...... DEGREE OF FREEDOMS (UNKNOWN DISPLACEMENTS & SLOPES)

DSN...... DESIGN VARIABLE FOR EACH ELEMENT

DV1BG....DESIGN VARIABLE #1 (BASE DIMENSION) INITIAL ESTIMATE
DV1LO....DESIGN VARIABLE #1 (BASE DIMENSION) LOWER SIDE CONSTRAINT
DV1UP....DESIGN VARIABLE #1 (BASE DIMENSION) UPPER SIDE CONSTRAINT

EK....... 6X6 ELEMENT STIFFNESS MATRIX IN LOCAL X,Y COORDINATES
EKPR..... 6X6 ELEMENT STIFFNESS MATRIX IN ELEMENT LOCAL COORDINATES
ELEN..... LENGTH OF ELEMENT

F.o....... FORCE VECTOR OF SYSTEM

FA....... CONSTANT DISTRIBUTED LOAD IN X DIRECTION FROM END TO END
FM....... CONCENTRATED MOMENT AT FREE END

FX....... CONCENTRATED LOAD IN X DIRECTION AT FREE END

FY....... CONCENTRATED LOAD IN Y DIRECTION AT FREE END

G........ THE ARRAY OF CONSTRAINT FUNCTIONS

GAMMA. ...6X6 ELEMENT TRANSFORMATION MATRIX

GK....... (NDOF) X (NDOF) GLOBAL STIFFNESS MATRIX

H........ DEPTH OF ARCH SECTION

INDSN....INITIAL (UNIFORM) DESIGN DIMENSION

INFO..... DOT PARAMETER USED TO SIGNAL THAT THE OPT IS COMPLETE
IPRINT...DOT PARAMETER USED SELECT THE DATA OUTPUT FORMAT
IPRM..... DOT SELECTABLE INTEGER PARAMETERS

ITERATE. .THE NUMBER OF TIMES DOT IS TO BE RELOADED WITH THE
PRECEEDING DATA

IWK...... DOT INTERNAL WORK SPACE ARRAY

METHOD...DOT PARAMETER USED TO DEFINE THE OPTIMIZATION METHOD

MINMAX...DOT PARAMETER USED TO MINIMIZE/MAXIMIZE THE PROBLEM

NCON..... NUMBER OF DESIGN CONSTRAINTS

NDOF..... NUMBER OF DEGREES OF FREEDOM

NEL...... NUMBER OF ELEMENTS

NRIWK....DOT INTERNAL WORK SPACE ARRAY DIMENSION
NRWK..... DOT INTERNAL WORK SPACE ARRAY DIMENSION
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NSNP.....NUMBER OF SYSTEM NODAL POINTS

OBJ......THE OBJECTIVE FUNCTION OF THE OPTIMIZATION
OPTDCS...QPTIMIZATION DECISION TO OPTIMIZE THE PROBLEM OR NOT
Pl...P4..PARAMETER DIMENSION CORRESPONDING TO THE NEL, NSNP, NCON,
AND NDOF, RESPECTIVELY

PHI...... SUBTENDED ELELENT ANGLE (ALSO, PHIANG IN DEGREES)
PRCSN....THE PRECISION DESIRED TO SOLVE THE FEM SYSTEM OF EQUATIONS
RADIUS...ARCH RADIUS

RPRM..... DOT SELECTABLE REAL PARAMETERS

SIGMA_B..THE ELEMENTAL NORMAL STRESS DUE TO BENDING

SIGMA_ N..THE ELEMENTAL NORMAL STRESS DUE TO AXIAL FORCES
SIGMA_T..THE MAXIMUM TOTAL STRESS IN EACH ELEMENT

...... ..THE "DISPLACEMENT" VECTOR OF THE SYSTEM OF LINEAR EQUATIONS
WK....... DOT INTERNAL WORK AREA

X........GLOBAL HORIZONTAL COORDINATE

Y. GLOBAL VERTICAL COORDINATE

YIELD....YIELD STRENGTH OF THE ARCH MATERIAL

YOUNG. ...YOUNG’S MODULUS OF THE ARCH MATERIAL

(12222222 X22X22 222822228 X2 2282222223222 2222222222222 2222222222282 s 2 &
....declare the variables............. T e eeee et et e e
INCLUDE ’ARCH_COH.FOR’

A O % % % % % % % % % % % % % % % % % % ®
[

....read the input pParameterS......couirroeeecancecenannannnns
OPEN(8, FILE='’ARCH_IN.DAT’, STATUS=’OLD’)
READ (8, *) ANGLE, RADIUS, YOUNG, YIELD, NEL, METHOD, IPRINT, DV1BG,

& DV1LO,DV1UP, H,CLAN,FX,FY,FM,FA, OPTDCS, ITERATE, PRCSN,
& BX1, BY1, BM1,BX2,BY2,BM2, LABEL
C
C ....define constants. . ... ... ...ttt etraanacntccenroanaaaenn
NCON = 3*NEL
NSNP = NEL + 1
NDOF = 3*NSNP
C
(o] ....determine the system nodal coord and element orientation..
CALL GEOMETRY (NEL,NSNP,ANGLE,RADIUS,X,Y,ALPHA,BETA, ELEN)
C
C ....define the size of the work arrays for DOT..........ccou.u.
NRWK = 38800
NRIWK = 400
C
o ....optimize the problem..... Cieeeaneaann e e e cec et
CALL OPTIMIZATION_TOOL
c
c ....compile and format the output..........ccvcuennn.. e
CALL ARCH_OUTPUT
C
END
I ZEEXEEZRRRR S22 222 2222222222222 3222222222882 2222822R 22 RRR2 s sl S
* *
SUBROQUTINE GEOMETRY (NEL,NSNP,ANGLE, RADIUS,X,Y,ALPHA, BETA, ELEN)
(o
C | This routine is used by main ARCH_OPTIMIZATION to generate |
C ] the x-, y-coordinates of each system node, to determine |
Cc | the orientation of each element, and to calculate the |
o | length of each element. |
C - =
C ....declare the variables....... ..ottt ieenerarnnseenennas

INTEGER NEL, NSNP,P1,P2

PARAMETER (P1=32,P2=33)

REAL ANGLE, RADIUS,ELEN, X (P2),Y (P2) ,ALPHA(P1l) BETA(Pl),
& PI,PHI, ANG, YNUM, XDEN
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PARAMETER(PI = 3.141593)

ao

....determine the geometriC CONStaANtS. ... evierornancocnsonns
PHI = (ANGLE/NEL)* (PI1/1803.0)

X(1) = 0.0
Y{1) = 0.0

DO 100 i=2, NSNP
ANG = (i-1.0)*PHI
X(i) = RADIUS * (1.0 - COS (ANG))
Y(i) = RADIUS * SIN(ANG)
YNUM = (Y(i) - Y(i-1))
XDEN = (X(i) - X(i-1))
ALPHA(i-1) = ATAN2 (YNUM, XDEN)
BETA(i-1) = (PI/2.0) - ALPHA(i-1)
100 CONTINUE

a0

....determine the length of each element............c..0ouu.n.
ELEN = SQRT(X(2)**2.0 + Y(2)**2.0)

RETURN
END

LA RS RER RS2 R R 222 22 s 2R 2222222222882 e R R R R R 21
* *

SUBROUTINE OPTIMIZATION_TOOL

This subroutine directs the program flow optimization decision
i.e., optimize the problem or not. It also serves to set up &
execute the DOT optimization software.

OO0 00

....declare the variables....... ..ttt ieereeooeennnsonnnsenens
INCLUDE ’ARCH_COM.FOR’
INTEGER i

a0

....2ero out the RPRM and IPRM aArrayS......cceceeecsseosonccnns
DO 100 i=1,20
RPRM(i) = 0.0
IPRM(i) = 0
100 CONTINUE

cee.dnitialize COUNT. .. ...viirieeneconeanocosanaencncasnnnnnas
COUNT = 0

aoa 00

....refine the constraint tolerence........ccoeeeeevceeenonnnn
RPRM(2) = 0.0001
RPRM(3) = 0.0001

....turn Ooff DOT’'’S auto 3Caling..... ..ot eeeeescencnnnns
IPRM(2) = -1

[oNeo NN Ne

....increase DOT’s default number of iterations...............
IPRM(3) = 1000
IPRM(8) = 1000

a0

....increase DOT’s number of consecutive convergence criteria.
IPRM(4) = 3
IPRM(9) = 3

o] ....define MINMAX=-1 to minimize the objective function.......
MINMAX = -1




c ....initialize the design variable limits and best guess......
DO 200 i=1,NEL
BASE (i) = DV1BG
BASEL(i) = DV1LO
BASEU (i) = DV1UP
200 CONTINUE

C
C ....make optimization decision........iuiiiiintrrnnnrcenenns
IF (OPTDCS .NE. 1) THEN
CALL EVAL
RETURN
ENDIF
C
Cc ....ready to optimize.........coiennannceccans e et
INFO = 0
Cc
300 CALL DOT (INFO,METHOD, IPRINT,NEL, NCON, BASE, BASEL, BASEU, OBJ,
& MINMAX, G, RPRM, IPRM, WK, NRWK, IWK, NRIWK)
Cc
c ....evaluate the objective function and constraints...........
IF (INFO .GT. 0) THEN
CALL EVAL
GOTO 300
ENDIF
o
c ....refine the solution vector by reoptimizing................
IF (COUNT .LT. ITERATE) THEN
INFO = 0
COUNT = COUNT+1
GOTO 300
ENDIF
C
RETURN
END
L ZEX2EERE SRS SdRRSR222R 2282222 RdR X222 R RSttt taR R 2o 0S54
* *
SUBROUTINE EVAL
Cc
c This subroutine is used to evaluate the Objective function,
o constraint functions, and side constraints of the optimization
C problem.
C 3
c ....declare the variables......... ...ttt iensenncnannnas
INCLUDE ‘ARCH_COM.FOR’
INTEGER i, j
c
o ....calculate the objective function.................... e
OBJ = 0.0
C
DO 100 i=1,NEL
OBJ = OBJ + BASE (i) *H*ELEN
100 CONTINUE
C
Cc ....initialize the design constraint vector............. e
DO 200 i=1,NCON
G(i) = 0.0
200 CONTINUE
Cc
C ....determine the design constraints........... .t iaenn.n

CALL ARCH_STRESS
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DO 210 i=1,NEL
IF (SIGMA_T(i) .GE. SIGMA_T(i+1)) THEN
SIGMA = SIGMA_T (i)
ELSE
SIGMA = SIGMA_T (i+l)
ENDIF

G(i) = (SIGMA/YIELD) - 1.0
210 CONTINUE

c
DO 220 i=1,:EL
j=i+NEL
G(3) = (BASE(i)/(3.0%*H)) - 1.0
220 CONTINUE
c

DO 230 i=1,NEL
+i+ (2*NEL)
G(j) = H/(10.0*BASE(i)) - 1.0
230 CONTINUE

RETURN
END

LA SRR RRRS SRt Rttt i i sttt s ittt 22 2222222222222 22222220 R 24
* *

SUBROUTINE ARCH_STRESS

This subroutine is used to perform the Finite Element analysis
of the stresses developed in an arch or beam for a given load-
ing.

e XeXoNoNeN®)

....declare the variables.......... ittt evneeennneonnaseeen
INCLUDE ’ARCH_COM.FOR’

INTEGER IPVT (99)

REAL GK(pP4,P4),F (P4)

REAL*8 BK(P4,P4),BF(P4),BU(P4),FAC(9801),WORK(99)

....form the eiement and system matrices.........ccvevuenenenn
CALL FORM (NEL,NDOF,ALPHA,BETA, H, ELEN, YOUNG, BASE, GK)

c...fOrMm the FOrCe VeCLOr, F... ... .t iteeeeerensescennesanocnns
CALL FORCE_VECTOR (NEL, NDOF, ELEN, ALPHA, BETA,FA, F)

....8et the boundary conditiona and loads........ccvevuuurnrn.
CALL BNDARY (NDOF,GK,CLAN,FX,FY,FM,F,BX1,BYl,BMl,6 BX2,BY2, BM2)

....80lve the system 01 €@qUAtiIONS.....ctererecncnceanannnnns

IF (PRCSN .EQ. 2) THEN
....change GK and F arrays to double precision.... ...
CALL UPSCALE (NDOF,GK,F, BK,BF)
....80lve the system of equations........cc.veeeeeuunn
CALL DLZ2ARG (NDOF,BK,P4,BF,1,BU,FAC, IPVT,WORK)
....change BU array to single presicion...............
CALL DOWNSCALE (NDOF,BU,U)

ELSE

C ....80lve the system of equations....... ...
CALL L2ARG (NDOF,GK,P4,F,1,U,FAC, IPVT,WORK)

ENDIF

O O O 00 o0 a0 o0

C ....determine the stress distribution........cciiiveneoneen.
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CALL STRESS(X,Y,ALPHA,BETA,U,NEL, ELEN, YOUNG, H, SIGMA_T)
C

RETURN

END

I 2222232332222 2238282882222 2222222022 S22 222ttt s s s S
* *

SUBROUTINE FORM (NEL,NDOF,ALPHA,BETA, H, ELEN, YOUNG, BASE, GK)

This subroutine is used to construct the global stiffness mat-
rix for the arch problem.

....declare the variables. .. ... .ot eeeetonrsoceroccnnnnuanaes
INTEGER NEL, NDOF,NPOW, IEL,I,J,K,II1,JJ,KK,I1I,JJJ,P1,P2,P4

PARAMETER (P1=32,P2=33,P4=99)

O O 00000

REAL ELEN,H, BASE (P1) ,ALPHA (Pl) ,BETA (P1) , YOUNG,
€¢1,C2,C3,C4,C5,CA,CB,EKPR(6,6) ,GAM(6,6) ,EK(P1,6,6),
GRMMA (P1,6,6),GK(P4,P4),EKGA(6,6) ,GAEKGA (6,6),
ALPHAI, BETAI

o

a0

....define the constants CxX......cctvteererrecesosancacsssnsenscs
NPOW = 1

c1 YOUNG*H/ELEN

c2 (H/ELEN) **2 0

Cc3 {H**2.0) / (2.0*ELEN)

c4 (H**2.0)/3.0

(o} c4/2.0

C ....initialize the EKPR and GAM arrayS.....cscseseisecccccases
DO 100 IXI = 1,6
DO 90 JJ= 1,6
EXPR(II,JJ) = 0.vL
GAM(II,JJ) = 0.0
90 CONTINUE
100 CONTINUE

C ....initialize the EK and GAMMA arrayS......cccececececenccans
DO 130 IEL = 1,NEL
DO 120 I = 1,6
DO 110 J = 1,6
EK(IEL,.,J) = 0.0

GAMMA (IEL,I,J) = 0.0
110 CONTINUE
120 CONTINUE
130 CONTINUE

(o Xe]

....determine the EKPR MACILiX....ceeereeeerosooocncoacnsosascancs
EKPR(1,1) cl
EKPR(1, 4) -C1
EKPR (2, 2) C1*C2
EKPR (2, 3) C1*C3
EKPR (2, 5) -Cl*C2
EKPR (2, 6) C1*C3
EKPR (3, 2) C1*C3
EKPR (3, 3) Cl*C4
EKPR(3,5) -C1*C3
EKPR(3, 6) C1*C5
EKPR(4,1) -Cl1
EKPR (4, 4) Cl
EKPR (5, 2) -Cl*C2
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EKPR(5,3) = -C1*C3

EKPR(5,5) = Cl1*C2
EKPR(5,6) = -C1*C3
EKPR(6,2) = C1*C3
EKPR(6,3) = C1*CS
EKPR(6,5) = -C1*C3
EKPR(6,6) = C1*C4

c...initialize the GK Array........veeieeceeerseeonsonannasnas
DO 150 I = 1, NDOF
DO 140 J = 1, NDOF
GK(I1,J) = 0.0
140 CONTINUE
150 CONTINUE

....determine the GAMMA MAtLIriX.....veoveeeeneeneoeesncanananens
DO 170 IEL = 1,NEL

ALPHAI = ALPHA (IEL)

BETAI = BETA (IEL)

CA = COS(ALPHAI)

CB = COS (BETAI)

GAMMA (IEL,1,1) = CA
GAMMA (IEL,1,2) = CB
GAMMA (IEL,2,1) = -CB
GAMMA (IEL,2,2) = CA
GAMMA (1IEL,3,3) = 1.0
GAMMA (IEL,4,4) = CA
GAMMA (IEL,4,5) = CB
GAMMA (IEL,S5,4) = -CB
GAMMA (IEL,S5,5) = CA
GAMMA (1IEL,6,6) = 1.0

170 CONTINUE

....initialize the EKGA and GRAEKGA aArrayS.......ceceeeesencenss
DO 270 IEL = 1, NEL
DO 190 III = 1,6
DO 180 JJJ = 1,6
EKGA (III,JJJ) = 0.0
GAEKGA (III1,JJJ) = 0.0
180 CONTINUE
190 CONTINUE

...determine the EKGA Array......cuceceesencasoscscacasannans
DO 220 I =1,6
DO 215 0 =1,6
DO 210 K = 1,6
EKGA(I,J) = EKGA(I,J) + EKPR(I,K)*GAMMA (IEL,K, J)

210 CONTINUE
215 CONTINUE
220 CONTINUE

....determine the GAEKGA AIXaY.....ccceeeevoroccccosonassscnas
DO 235 J = 1,6
DO 230 K = 1,6
GAEKGA (I,J) = GAEKGA(I,J)

& +GAMMA (IEL, K, I) *EKGA (K, J)
230 CONTINUE
235 CONTINUE
240 CONTINUE
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c ....copy the GAEKGA array into the EK array.........cccceeeee.
DO 260 I = 1.6
DO 250 J = 1,6
EK(IEL,I,J) = GAEKGA(I,J)
250 CONTINUE
260 CONTINUE
270 CONTINUE

C ....construct the GK MAatriX. ... it iireneenesonoesseccanansaes
DO 300 IEL = 1, NEL
Il = 3*(IEL-1)
DO 290 J = 1, 6
JJ = II + J
DO 280 K =1, 6
KK = II + K
GK(JJ,KK) = GK(JJ,KK)
& +EK (IEL, J,K) * (BASE (IEL) **NPOW)
280 CONTINUE
290 CONTINUE
300 CONTINUE

RETURN

END
L2 XSS S 2222222222222 8R2232222 8222222222322 2232223232 32222223 2t 22t S S

* *

SUBROUTINE FORCE_VECTOR (NEL,NDOF,ELEN,ALPHA, BETA, FA,F)

This subroutine is used to construct the force vector for the
FEM problem specified.

....declare the variables...... ...ttt enneoeoceacessssssacoas
INTEGER NEL,NDOF,i,I1,12,13,P1,P4

PARAMETER (P1=32,P4=99)

REAL ELEN, ALPHA (P1) ,BETA (P1) ,FA,F (P4)

a0 O O 00000

cee.fOrM the F-veCtOor. ...t iitenneeecsssecnenscennoscsanvsanas
F(l) = (ELEN/2.0) * (~-COS(BETA(1l)))

F(2) = (ELEN/2.0) * (COS(ALPHA(1)))

F(3) = (ELEN**2.0)/12.0

DO 100 i=2,NEL
I1 = (i-1)*3 + 1
I2 = (i-1)*3 + 2
I3 = (i-1)*3 + 3

F(Il) = (ELEN/2.0)* (~-COS(BETA(NEL)))
& +{ELEN/2.0) * (-COS (BETA (NEL-1)))
F(I2) = (ELEN/2.0)*(COS (ALPHA (NEL)))
& +(ELEN/2.0) * (COS (ALPHA (NEL-1)))
F(I3) = 0.0
100 CONTINUE

F (NDOF-2) = (ELEN/2.0)* (-COS (BETA (NEL)))
F(NDOF-1) = (ELEN/2.0)* (COS (ALPHA (NEL)))
F (NDOF) = - (ELEN**2.,0)/12.0

(o] ....3cale the F-vector by FA........ciititietnnssscnssecnesans

DO 200 i=1,NDOF
F(i) = FA*F (i)
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200 CONTINUE

C
RETURN
END
(22282222222 222 2222223222222 222222 2322222282222 X222 222323 222228 81
* *
SUBROUTINE BNDARY (NDOF,GK,CLAN,FX,FY,FM,F,BX1l,BYl,BMl, BX2,
& BY2, BM2)
C
Cc This subroutine is used to impose the boundary conditions upon
C the global stiffness matrix and force vector.
C
INTEGER NDOF,BX1, BYl,BM1l,BX2,BY2,BM2,CLAN,i,N,I1,I2,13,P4
PARAMETER (P4=99)
REAL GK(pP4,P4) ,FX,FY,FM,F (P4)
C
ol ....invoke the essential boundary conditions...................
IF (BXl1 .EQ. 1) THEN
CALL IMPOSE_BC (NDOF,GK,1,F)
ENDIF
C
IF (BY1l .EQ. 1) THEN
CALL IMPOSE BC (NDOF,GK,2,F)
ENDIF
C
IF (BM1 .EQ. 1) THEN
CALL IMPOSE_BC (NDOF,GK, 3,F)
ENDIF
C
IF (BX2 .EQ. 1) THEN
N=NDOF-2
CALL IMPOSE BC (NDOF,GK,N,F)
ENDIF -
C
IF (BYZ2 .EQ. 1) THEN
N=NDOF-1
CALL IMPOSE_BC (NDOF,GK,N,F)
ENDIF
C
IF (BM2 .EQ. 1) THEN
CALL IMPOSE_BC (NDOF,GK,NDOF,F)
ENDIF
Cc
Cc ....add the concentrated load to the force vector............
Il=(CLAN-1)*3+1
I2=(CLAN-1)*3+2
I3=(CLAN-1)*3+3
c
F(Il)=F(Il)+FX
F(I2)=F(I2)+FY
F(I3)=F(I3)+FM
C
RETURN
END
LA S 2RSSR 2222222222222 2228223222233 2222222222232 2222 2222222 31
* *
SUBROUTINE IMPOSE BC (NDOF,GK,N,F)
C
c This subroutine is used to do the redundant leg work of impos-
c ing the boundary conditions.
C
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....declare the variables......c.ccvueretosciocsanosssnanascnns
INTEGER NDOF,N,i,P4

PARAMETER (P4=99)

REAL GK(P4,P4),F (P4)

....impose the boundary condition on the GK and F arrays......
DO 100 i=1,NDOF
GK(N,i) = 0.0
CONTINUE
GK(N,N) = 1.0
F(N) = 0.0

RETURN
END

(2 22 2 2 R R PSS RSS2 2SS 2222222222 232822222222 2222 2222222222222 2222dt

*

QOO0

100
110

*

SUBROUTINE UPSCALE (NDOF, GK, F, BK, BF)

This subroutine is used to change the stiffness matrix & force
vector from single precision to double precision in order to
solve the linear system of equations in double precision.

....declare the variables........cccoveectneeneccosasccnssassns
INTEGER NDOF, i, j, P4

PARAMETER (P4=99)

REAL GK(P4,P4),F (P4)

REAL*8 BK(P4,P4),BF(P4)

....generate the doubleprecision compliments of GK and F......
DO 110 i=1,NDOF
DO 100 j=1,NDOF
BK(i,j) = GK(i,J)
CONTINUE
BF (i) = F(i)
CONTINUE

RETURN
END

AR S22 2222222222222 22222222222 2222222 R 2R Rt 2t RRRRRRRERE S

*

oXeXeNeNeKe)

100

*

SUBROUTINE DOWNSCALE (NDOF, BU, U)

This subroutine is used to do down scale the double precision
solution of the linear system of equations back to single pre-
cision. DOT could have problems with double precision numbers!

....declare the variables.........tciteccnncensccasssacensannns
INTEGER NDOF, i, P4

PARAMETER (P4=99)

REAL U{(P4)

REAL*B8 BU(P4)

....generate the doubleprecision compliments of GK and F......
DO 100 i=1,NDOF

U(i) = BU(1)
CONTINUE

RETURN
END

22222 XX2 2222222222233 2 2222222222222 222222222 2d 2ttt 8RaRRRddd SRRl s &

*

*
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SUBROUTINE STRESS (X,Y,ALPHA,BETA, U,NEL, ELEN, YOUNG, H, SIGMA_T)

This subroutine computes the stress at each nodal point.

PRI e =Y o B I B - < 1< + ¥ 1
INTEGER NEL, NSNP,NDOF, SWITCH,i,I1,12,13,14,15,16,17,18,19,
& Pl,pP2,P4
PARAMETER (P1=32,P2=33,P4=99)
REAL ELEN,H,X(P2),Y(P2) ,ALPHA(Pl),BETA (P1), YOUNG,

& K1,K2,CAl,CA2,CB1,CB2,v,vl,v2,
& elxdisp (P2),elydisp(P2),ELEN_f (P2) ,DISPLEN(P2),
& U(P4),SIGMA_N(P4),SIGMA_B(P4),SIGMA_T (P4)

....determine the CONStaANtS......ivutevencscscssoneccsaasoaness
K1=6.0/ (ELEN**2_ Q)

K2=2 .0/ (ELEN)

NSNP = (NEL + 1)

NDOF = NSNP*3

....determine the bending stresses..........ccctieeeroncnnenan

DO 100 i=2,NEL
Il=(i-2)*3+1
I2=(i-2)*3+2
I3=(i-2)*3+3
I4=(i-1)*3+1
IS5=(i-1)*3+2
I6=(i-1)*3+3
I7=(i-0)*3+1
I8=(i-0)*3+2
I9=(i-0)*3+3

CBl= COS(BETA(i-1))
CAl= COS (ALPHA(i-1))
CB2= COS(BETA(i))
CA2= COS (ALPHA(i))

v2 = K1*(U(I4)-U(Il))*CB1
& +K1* (U(I2)-U(IS5))*Cal
& +K2* (U(I13)+2.0*U(I6))
vl = K1*(U(I4)-U(I7))*CB2
& +K1* (U(I8)-U(IS5))*CA2
& ~K2* (U(I6)*2.0+U(I19))
IF (ABS(vl) .GE. ABS(v2)) THEN
v=yl
ELSE
v=y2
ENDIF
SIGMA_B(i) = YOUNG*(H/2.0)*v
100 CONTINUE
v = K1*(U(1)-U(4))*COS(BETA (1))
& +K1* (U (5) -U(2)) *COS (ALPHA (1))
& -K2* (U{3)*2.0+U(6))

SIGMA_B (1) = YOUNG* (H/2.0)*v
v = K1*(U(NDOF-2)-U(NDOF-5)) *COS (BETA (NEL) )
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300

350

400

+K1* (U (NDOF-4) -U (NDOF-1) ) *COS (ALPHA (NEL) )
+K2* (U(NDOF-3) +2.0*U (NDOF) )

SIGMA B(NEL+1l) = YOUNG* (H/2.0)*v

....determine the NOIMal SLrESS8ES8. .. ...cveveronceccnesosscnsss
SWITCH = 1

IF (SWITCH .EQ. 1) THEN
DO 300 i=2,NEL

Il = (NEL-2)*3+1
I2 = (NEL-2)*3+2
I3 = (NEL-2)*3+3
I4 = (NEL-1)*3+l
IS = (NEL-1)*3+2
I6 = (NEL-1)*3+3
I7 = (NEL-0)*3+1
I8 = (NEL-0)*3+2
I9 = (NEL-0)*3+3

CAl= COS (ALPHA (NEL-1))
CBl= COS (BETA (NEL-1))
CA2= COS (ALPHA (NEL) )
CB2= COS (BETA (NEL))

v2 = (U(I4)-U(I1l))*CAl + (U(IS5)-U(I2))*CBl
vl = (U(I7)-U(I4))*CA2 + (U(I8)-U(IS5))*CB2

IF (ABS(vl) .GE. ABS(v2)) THEN
v=yl

ELSE
v=y2

ENDIF

SIGMA_N(i) = (YOUNG/ELEN)*v
CONTINUE

v = (U(4)-U(1))*COS(ALPHA (1)) + (U(5)-U(2))*COS(BETA(1l))
SIGMA N(1) = (YOUNG/ELEN)*v

v = (U(NDOF-2)-U(NDOF-5)) *COS (ALPHA(NEL)) +
(U(NDOF~-1) -U (NDOF-4) ) *COS (BETA (NEL) )
SIGMA_N(NEL+1) = (YOUNG/ELEN)*v

ELSE
DO 350 i=1,NEL+1
SIGMA N(i) = 0.0
CONTINUE
ENDIF

....determine the total stresses at eachnode.................
DO 400 i=1,NEL+1

SIGHA_T(i) = ABS (SIGMA_B(i)) + ABS(SIGMA_N(i))
CONTINUE

RETURN
END

(2222222222222 2 2222222222222 2R R222 22222022222 22222822 222t 22t £ 4

*

o

*
SUBROUTINE ARCH_OUTPUT
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300

310

This subroutine formats the final results and output of the
optimization problem and stores it in a file named ARCH_OUT.DAT

c...declare variablesS. . ... ..ttt inr et anacccascesasaassaneaann
INCLUDE ’ARCH_COM.FOR'
REAL VOL, VOLUME

....open output file and write header............civtirnnnn..
OPEN (9, FILE='ARCH_OUT.DAT’, STATUS='UNKNOWN’)

WRITE(9,100) LABEL

WRITE(9,100) ’ OPTIMIZATION SOLUTION’

WRITE(9,105) ' ==cre—mmemmm e me e e
FORMAT (/5X,A)

FORMAT (5X, A7)

B T Yo 1<+ TP
WRITE(9,100) ’ A) Problem Parameters:’

WRITE(9,110) ‘' Arch Angle :’, ANGLE, ' Youngs Modulus:’, YOUNG
WRITE(9,110) ’ Arch Radius:’, RADIUS, ' Yield Strength:’,YIELD
WRITE(9,115) ‘ Arch Height:’, H, ’ No of Elements:’,NEL
FORMAT (8X,A,F12.3,T38,A,F12.1)

FORMAT (8X,A,F12.3,T38,A,I10)

B 1Y o3 5 1+ W -
WRITE(9,100) ’ B) Derived Constants:’

WRITE(9,120) ' No of System Nodal Points...’,NSNP

WRITE(9,120) ’ No of Degrees of Freedom....’,NDOF

WRITE(9,125) ' Length per Element.......... ' ,ELEN
WRITE(9,125) ’ Phi Angle per Element....... ’ ,PHIANG
WRITE(9,120) ' Number of Iterations........ !, ITERATE

FORMAT (8X,A, 16)

FORMAT (8X,A,F12.4)

B Y o8 o <3+ W 0
WRITE(9,100) ’ C) Structure Loading:’

WRITE(9,125) "FX...ioiteeeoesunnnonnooons ' ,FX

WRITE(9,125) "FY....iiieiieenenennnnacnnnns ‘', FY

WRITE(9,125) "FM. ... cticitnncnnnnenaonnens ', FM

WRITE(9,125) "FA......cceeeteeennnennnonnn ‘', FA

B L Yo o < 3 s T

WRITE(9,100) ’ D) Elemental Dimensions and Stress Distribution:’

WRITE (9,210) ’'Element’,’Height’,’Base’,’Length’,’Volume’

FORMAT (8X,A,T19,A,T34,A,T50,A,T62,A)
FORMAT (8Xx,14,T17,F10.5,T32,F10.5,T748,F8.5,T60,F8.5)
VOLUME = 0.0

DO 300 i=1,NEL
VOL = H*ELEN*BASE (i)
WRITE(9,220) i,H,BASE(i),ELEN,VOL
VOLUME = VOLUME + VOL

CONTINUE

....8ection "E". .. ...ttt f et eeresecceesntaraacasanan
WRITE(9,100) ’ E) Objective Function:’

WRITE(9,310) ’ Total structure Volume:’,VOLUME

FORMAT (8X,A,F12.6)
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WRITE (9, 330) ’Node’,’Stress’
DO 320 i=1,NSNP
WRITE(9,*) i,SIGMA_T(i)
320 CONTINUE
330 FORMAT (8X,A,T19,A)

B Lo 8 < WD
WRITE(9,100) ’ F) Boundary Conditions:’

WRITE(9,410) ‘Node’,’X-Displ’,’Y-Displ’,’Slope’

WRITE (9,430) 1,BX1,BY1,BM1

WRITE (9,430) NEL+1,BX2,BY2,BM2

B o] A R 3 s W
WRITE(9,100) ’ G) Solution Vector:’
WRITE(9,410) ’‘Node’,’X-Displ’,’Y-Displ’,’Slope’
DO 400 i=1,NSNP
Il=(i-1)*3+1
I2=(i-1)*3+42
I3=(i-1)*3+3
WRITE(9,420) i,U(Il1),U(12),U(1I3)
400 CONTINUE
410 FORMAT (T9,A,T17,A,T31,A,T46,A)
420 FORMAT (7X, 15, 3E14.6)
430 FORMAT (7X,15,T20,I4,T34,14,T48,14)

RETURN
END
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Lol JB  JI )

ARCH_COMMON

BRI o 13 5 1 + B8 B I~ « - T
Pl..... The maximum number of elements

P2..... The maximum number of global nodal points

P3..... The maximum number of design constraints

P4..... The maximum number of degrees of freedom

....declare the variables...... et eecceenee st

INTEGER NEL, NCON, NSNP, NDOF,METHOD, MINMAX, INFO, IPRINT, IWNK(400),
NRWK, NRIWK, IPRM(20) , COUNT, OPTDCS, ITERATE, PRCSN, CLAN,
BX1, BYl,BM1,BX2,BY2,BM2,P1,P2,P3,P4

PARAMETER (P1=32,P2=33,P3=96, P4=99)

REAL ANGLE, RADIUS,ELEN, H,X (P2),Y(P2) ,ALPHA(P1) ,BETA(P1),
YOUNG, YIELD,WK (27000) , RPRM(20) ,0BJ,G(P3),
DV1BG,DV1LO,DV1UP, BASE (P1),BASEL(P1),BASEU(Pl),
FA,FX,FY,FM,U(P4),SIGMA_ T (P4)

.MAKE QN COMMON. .. civuvsseectasensosscseecncososnnnosnccnnoncsss
COMMON NEL, NCON, NSNP, NDOF, HETHOD MINMAX, INFO, IPRINT, IWK,
NRWK, NRIWK, IPRM, COUNT, OPTDCS, ITERATE, PRCSN, CLAN,
ax1,a¥1,su1,ax2,ayz,auz,
ANGLE, RADIUS,ELEN,H, X, Y, ALPHA, BETA, YOUNG, YIELD,
WK, RPRM, OBJ, G, DV1BG,DV1LO,DV1UP, BASE, BASEL, BASEU,
FA,FX,FY,FM,U,SIGMA_T
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